## FACT SHEET

Regarding an NPDES Permit To Discharge to Waters of the State of Ohio for **Brush Wellman**, Inc.

Public Notice No.: 02-03-062

Public Notice Date: March 22, 2002

Comment Period Ends: April 22, 2002

OEPA Permit No.: 2IE00000\*LD

Application No.: OH0002518

Name and Address of Applicant:

Brush Wellman 14710 W. Portage River South Road Elmore, Ohio 43416 Name and Address of Facility Where Discharge Occurs:

Brush Wellman 14710 W. Portage River South Road Elmore, Ohio Ottawa County

Receiving Water: Portage River and Hyde Run

Subsequent

Stream Network: Portage River to Lake Erie

### Introduction

Development of a Fact Sheet for NPDES permits is mandated by Title 40 of the Code of Federal Regulations, Section 124.8 and 124.56. This document fulfills the requirements established in those regulations by providing the information necessary to inform the public of actions proposed by the Ohio Environmental Protection Agency, as well as the methods by which the public can participate in the process of finalizing those actions.

This Fact Sheet is prepared in order to document the technical basis and risk management decisions that are considered in the determination of water quality based NPDES Permit effluent limitations. The technical basis for the Fact Sheet may consist of evaluations of promulgated effluent guidelines, existing effluent quality, instream biological, chemical and physical conditions, and the relative risk of alternative effluent limitations. This Fact Sheet details the discretionary decision-making process empowered to the Director by the Clean Water Act and Ohio Water Pollution Control Law (ORC 6111). Decisions to award variances to Water Quality Standards or promulgated effluent guidelines for economic or technological reasons will also be justified in the Fact Sheet where necessary.

## Procedures for Participation in the Formulation of Final Determinations

The draft action shall be issued as a final action unless the Director revises the draft after consideration of the record of a public meeting or written comments, or upon disapproval by the Administrator of the U.S. Environmental Protection Agency.

Within thirty days of the date of the Public Notice, any person may request or petition for a public meeting for presentation of evidence, statements or opinions. The purpose of the public meeting is to obtain additional evidence. Statements concerning the issues raised by the party requesting the meeting are invited. Evidence may be presented by the applicant, the state, and other parties, and following presentation of such evidence other interested persons may present testimony of facts or statements of opinion.

Requests for public meetings shall be in writing and shall state the action of the Director objected to, the questions to be considered, and the reasons the action is contested. Such requests should be addressed to:

Legal Records Section
Ohio Environmental Protection Agency
P.O. Box 1049
Columbus, Ohio 43216-1049

Interested persons are invited to submit written comments upon the discharge permit. Comments should be submitted in person or by mail no later than 30 days after the date of this Public Notice. Deliver or mail all comments to:

Ohio Environmental Protection Agency Attention: Division of Surface Water Permits Section P.O. Box 1049 Columbus, Ohio 43216-1049

The OEPA permit number and Public Notice numbers should appear on each page of any submitted comments. All comments received no later than 30 days after the date of the Public Notice will be considered.

Citizens may conduct file reviews regarding specific companies or sites. Appointments are necessary to conduct file reviews, because requests to review files have increased dramatically in recent years. The first 250 pages copied are free. For requests to copy more than 250 pages, there is a five-cent charge for each page copied. Payment is required by check or money order, made payable to Treasurer State of Ohio.

# Location of Discharge/Receiving Water Use Classification

Brush Wellman discharges at River Mile (RMs) 16.75 (006) and 16.7 (009) to the Portage River. The remainder of Brush Wellman's outfalls (002, 003, 004, 005, 007, 008, 011 and 014) discharge via Hyde Run to the Portage River. Hyde Run enters the Portage River at RM 16.55. The approximate location of the facility is shown in Figure 1.

This segment of the Portage River is described by Ohio EPA River Code: 16-001, USEPA River Reach #: 04100010-005, County: Ottawa, Ecoregion: Huron-Erie Lake Plain. The Portage River is presently designated for the following uses: Warmwater Habitat (WWH), Agricultural Water Supply (AWS), Industrial Water Supply (IWS), and Primary Contact Recreation (PCR).

Hyde Run is described by Ohio EPA River Code: 16-008, USEPA River Reach #: 04100010-NA, County: Ottawa, Ecoregion: Huron-Erie Lake Plain. Hyde Run is not presently designated in the Ohio Water Quality Standards.

The Portage River study area is shown in Figure 2.

## Facility Description

Brush Wellman is the only fully integrated supplier of beryllium, beryllium oxide, beryllium/copper alloys and beryllium ceramics in the United States. The raw materials used include beryllium oxide, scrap copper and other metallic sources. Processes include: pickling, melting, casting, forming, extruding, annealing, and heat treating. Process wastewater, sanitary wastewater and stormwater is discharged to the Portage River via Hyde Run.

The process operations performed at this facility are classified by the Standard Industrial Classification (SIC) codes 3339, "Primary Smelting and Refining of Non-ferrous Metals" and 3351, "Rolling, Drawing and Extruding of Copper" Discharges resulting from beryllium metal process operations are subject to Federal Effluent Guideline Limitations, contained in Chapter 40 of the Code of Federal Regulations, Part 421, "Non-ferrous Metals Manufacturing" Industrial Category.

#### **Description of Existing Discharge**

Brush Wellman has a number of discharge points to Hyde Run and the Portage River. Most of these are controlled discharges which are released only when rainfall or high production causes the lagoon systems to overflow. Hyde Run originates at the Brush Wellman facility and is essentially 100% effluent, except during heavy rain events, when flow in Hyde Run may include some runoff from Brush Wellman's property upstream of their outfalls. A description of the Brush Wellman facility outfalls/stations follows (see Table 1 for summary):

002 - discharge to Hyde Run from #5 lagoon. Process wastewater from the Beryllium Metal Plant is sent to #5 lagoon following ammonia removal by aeration. Calcium chloride and chlorine may be added for the removal of fluoride and cyanide, respectively, if levels warrant. Wastewater from #5 lagoon is reused in the plant, so is infrequently discharged to Hyde Run. Wastewater intended for reuse is pumped to a holding tank until needed. Wastewater from the holding tank may also be discharged to Hyde Run if necessary (see Outfall 014), but usually is not. Brush Wellman's NPDES Permit prohibits any discharge from this outfall when the Portage River flow is below 15 cfs (see station 801).

003 - internal outfall which discharges sanitary sewage to the IWWTP. Sanitary wastewater is treated in a 23,000 gpd extended aeration plant, including final rapid sand filtration, before being discharged to the IWWTP.

004, 005, 007, 008 - stormwater outfalls draining roofs and roads on the beryllium metal side of the Brush Wellman facility. Discharges from these outfalls are pumped to the IWWTP (outfall 011) except during heavy rainfall (the sumps capture the first flush at a minimum). Runoff not pumped to the IWWTP is discharged to Hyde Run.

006 - stormwater outfall draining a relatively small area including: roads on the copper alloy side of the Brush Wellman facility, Portage River South Rd., access roads and ditches along Portage R. So. Rd., and the parking lot. Most of the runoff from these areas is diverted to Brush Wellman's make-up pond, which is used for process water. Runoff that is not diverted to the make-up pond is discharged directly to the Portage River upstream of Hyde Run.

009 - stormwater outfall draining area west of SR 590, fields around the facility on the west side, and one stormwater tile on the copper alloy side of the Brush Wellman facility. Most of the runoff from these areas is pumped to Brush Wellman's make-up pond, which is used for process water, so flow from Outfall 009 should be low and it should not discharge at all during the summer. Runoff that is not diverted to the make-up pond is discharged directly to the Portage River upstream of Outfall 006.

011 - Industrial wastewater treatment plant (IWWTP) discharge to Hyde Run (A.k.a. Brush Creek). Wastewater from the beryllium alloy and beryllium oxide processes is treated by chemical precipitation, flocculation, mixing and neutralization. Lime is added to raise the pH of the wastewater to 9-10 S.U., causing metal hydroxides to settle out. Calcium chloride is used for fluoride removal and a flocculent is added before the waste is sent to the parallel plate clarifier. Sludge from the clarifier is sent to a thickener, then is disposed of off-site. Effluent from the clarifier is neutralized and sent to a holding tank before release to Hyde Run. The IWWTP is a continuous discharge, but can be held back if necessary for up to about 2 months. Brush Wellman's NPDES Permit prohibits any discharge from this outfall when the Portage River flow is below 15 cfs (see station 801).

014 - discharge to Hyde Run from holding tank. Following treatment in #5 lagoon (see Outfall 002), process wastewater is pumped to this holding tank for reuse in the plant. Wastewater may be discharged to Hyde Run if necessary, but usually is not. Brush Wellman's NPDES Permit prohibits any discharge from this outfall when the Portage River flow is below 15 cfs (see station 801).

801 - USGS gaging station on the Portage River at Woodville (04195500). Brush Wellman obtains instantaneous gage height information daily from this station and converts it to river flow(converted to river flow) in order to determine daily discharge limitations for Outfalls 002, 011, and 014.

Outfall 013 is being deleted from the permit because it no longer discharges.

Brush Wellman's current NPDES Permit contains loading limits for the three process discharges (Outfalls 002, 011, and 014 above) that are "tiered" based on the daily flow of the Portage River (see Station 801 above). Process wastewater discharges are permitted only when flow in the Portage River exceeds 15 cfs. Only one of the these three outfalls may discharge on any given day, and load limits that maintain the water quality criteria at various flows have been calculated for each outfall. Compliance with loading limits for these "tiers" are tracked under outfalls 041-046. The draft permit includes all of the tiered limits under outfall 099, rather than use separate outfalls for separate tiers.

Tables 2-4 present summaries of analytical results for Brush Wellman's outfalls' effluent samples compiled from the NPDES application, and from bioassay tests done by Ohio EPA. The monthly average  $PEQ_{avg}$  and daily maximum  $PEQ_{max}$  decision criteria are also included on this table.

Table 5-18 present a summaries of unaltered monthly operation report data for the period January 1995 to December 1999 for the Brush Wellman as well as current permit limits, and monthly average PEQ<sub>avg</sub> and daily maximum PEQ<sub>max</sub> values.

Table 19 presents results from acute bioassay tests conducted in accordance with the NPDES permit. Pimephales promelas (fathead minnows), and Ceriodaphnia dubia (water flea) were the test organisms.

Table 1. Sources of wastewater and current treatment systems used at Brush Wellman.

| <u>Outfall</u> | Wastewater Source       | <u>Treatment</u>                                                   |
|----------------|-------------------------|--------------------------------------------------------------------|
| 002/014        | Beryllium Metal Process | Ammonia stripping,<br>Chemical precipitation,<br>Settling lagoon   |
| 003            | Sanitary wastewater     | Extended aeration,<br>Rapid sand filtration<br>Treatment at 011    |
| 004, 008       | Stormwater              | Treatment at 011a                                                  |
| 005, 006, 007  | Stormwater              | No treatment                                                       |
| 009            | Stormwater              | Settling lagoon                                                    |
| 011            | Beryllium Alloy Process | Mixing, Flocculation,<br>Chemical precipitation,<br>Neutralization |

a: heavy rains may cause these outfalls to discharge directly, without treatment.

# Receiving Water Quality / Environmental Hazard Assessment

An assessment of the impact of a permitted point source on the immediate receiving waters includes an evaluation of the available chemical/physical (water column, effluents, sediment, flows), biological (fish and macroinvertebrate assemblages), and habitat data which have been collected by Ohio EPA pursuant to the Five-Year Basin Approach for Monitoring and NPDES Reissuance. Other data may be used provided it was collected in accordance with Ohio EPA methods and protocols as specified by the Ohio Water Quality Standards and Ohio EPA guidance documents. Other information which may be evaluated includes, but is not limited to, NPDES permittee self-monitoring data and effluent and mixing zone bioassays conducted by Ohio EPA, the permittee, or U.S. EPA.

Ohio EPA relies on a tiered approach in attempting to link administrative activity indicators (i.e., permitting, grants, enforcement) with true environmental indicators (i.e., stressor, exposure, and response indicators). Stressor indicators generally include activities which have the potential to degrade the aquatic environment such as pollutant discharges (permitted and unpermitted), land use effects, and habitat modifications. Exposure indicators include whole effluent toxicity tests, tissue residues, and biomarkers, each of which provides evidence of biological exposure to stressor or bioaccumulative agents. Response indicators include the more direct measures of community and population response and are represented here by the biological indices which comprise Ohio EPA's biological criteria. The key is in using the different types of indicators within the roles which are the most appropriate for each. Describing the causes and sources associated with observed impairments relies on an interpretation of multiple lines of evidence including the water chemistry data, sediment data, habitat data, effluent data, biomonitoring results, land use data, and biological response signatures within the biological data itself. Thus the assignment of principal causes and sources of impairment represents the association of impairments (defined by response indicators) with stressor and exposure indicators.

Use attainment is a term which describes the degree to which environmental indicators are either above or below criteria specified by the Ohio Water Quality Standards (WQS; Ohio Administrative Code 3745-1). Assessing use attainment status for aquatic life uses involves a primary reliance on the Ohio EPA biological criteria (OAC 3745-1-07; Table 7-14). These are confined to ambient assessments and apply to rivers and streams outside of mixing zones. Numerical biological criteria are based on multimetric biological indices which include the Index of Biotic Integrity (IBI) and modified Index of Well-Being (MIwb), which indicate the response of the fish community, and the Invertebrate Community Index (IC), which indicates the response of the macroinvertebrate community. Numerical endpoints are stratified by ecoregion, use designation, and stream or river size. Three attainment status results are possible at each sampling location -full, partial, or non-attainment. Full attainment means that all of the applicable indices meet the biocriteria. Partial attainment means that one or more of the applicable indices meet the biocriteria or one of the organism groups reflects poor or very poor performance. An aquatic life use attainment table (see Table 20) is constructed based on the sampling results and is arranged from upstream to downstream and includes the sampling locations indicated by river mile, the applicable biological indices, the use attainment status (i.e., full, partial, or non), the Qualitative Habitat Evaluation Index (QHEI), and comments and observations for each sampling location.

The following summary was compiled from the information and analyses contained in the *Biological and Water Quality Study of the Portage River Basin*, Ohio EPA Technical Report Number MAS/1994-8-7 and in Ohio EPA databases and files. While there have not been more recent surveys than 1994, the data from 1985 and 1994 show that attainment of Ohio's biological criteria has been consistent in the Portage River over time. Ohio EPA is unaware of any changes since 1994 that would adversely affect this attainment.

The WWH use attainment status for the Portage River mainstem was full at all sites upstream and downstream from Brush Wellman (Table 20). Assigning the use attainment status was performed in consideration of the influence of Lake Erie in which case the interim biocriteria used to evaluate Lake Erie estuaries were used. Biological index scores and attainment status for the individual sampling locations are provided in Table 20. Any changes noted in the composition of the fish community in this area were largely the result of the transition from a free-flowing river to the lake influenced estuary effect. The macroinvertebrate community reflected a detectable influence from Brush Wellman (via Hyde Run) within the mixing zone (RM 16.5S) with the increase of several pollution tolerant taxa; however, these changes were not sufficient to result in non-attainment of the WWH criteria for the ICI. There was no evidence of acute toxicity in any of the biological results.

Chemical water quality impacts from the Brush Wellman discharges were limited to elevated nitrate-N and copper immediately downstream from Hyde Run. Volatile and semi-volatile organic compounds were detected in effluent and some mixing zone samples at concentrations well below water quality criteria. A number of chlorinated pesticides were also detected, but these occurred both upstream and downstream. Extremely elevated levels of PCBs and PAHs were found in bottom sediments of the mainstem at Hyde Run (Brush Wellman mixing zone) and PCBs persisted at elevated levels downstream. Copper and beryllium concentrations in bottom sediment of the mixing zone were also elevated to levels expected to have adverse effects on benthic organisms. These were localized as concentrations declined dramatically downstream.

Compared to results obtained in a previous Ohio EPA survey in 1985, the 1994 results show slightly improved water quality and comparatively unchanged biological performance in the Portage River mainstem in the vicinity of Brush Wellman. The use attainment status during both years was essentially unchanged with any minor differences likely due to changing conditions within the transitional zone from free-flowing river to Lake Erie influenced estuarine habitat. Also, effluent pollutant concentrations for this period show that the main outfalls have either had steady pollutant concentrations (outfall 011) or slightly declining levels (outfall 002).

## **Development of Water-Quality-Based Effluent Limits**

Determining appropriate effluent concentrations is a multiple-step process in which parameters are identified as likely to be discharged by a facility, evaluated with respect to Ohio water quality criteria, and examined to determine the likelihood that the existing effluent could violate the calculated limits.

### Parameter Selection

Effluent data for the Brush Wellman were used to determine what parameters should undergo wasteload allocation. The sources of effluent data are as follows:

Self-monitoring data (LEAPS)

January 1996 through June 2001

2C data

Ohio EPA data (compliance)

March 1999

The effluent data were checked for outliers and the following values were eliminated from the data set:

011 - silver < 10 014 - silver < 8 041 - copper <25, nickel <22 042 - nickel <30, silver <7

043 - copper <45 044 - TDS <20 mg/l, copper <50 045 - TDS <1100 mg/l, nickel <25, silver <10

046 - TDS <4500 mg/l (all values in ug/l unless otherwise noted).

The average and maximum projected effluent quality (PEQ) values are presented in Table 22. For a summary of the screening results, refer to the parameter groupings at the end of this section.

#### Wasteload Allocation

For those parameters that require a wasteload allocation (WLA), the results are based on the uses assigned to the receiving waterbody in OAC 3745-1. The applicable waterbody uses for this facility's discharge and the associated stream design flows are as follows:

| Aquatic life (WWH)              |         |                     |
|---------------------------------|---------|---------------------|
| Toxics (metals, organics, etc.) | Average | Annual 7Q10         |
|                                 | Maximum | Annual 1Q10         |
| Ammonia-N                       | Average | Summer/winter 30Q10 |
| Agricultural Water Supply       |         | Harmonic mean flow  |
| Human Health (nondrinking)      |         | Harmonic mean flow  |
| Wildlife                        |         | Annual 90Q10        |

Allocations are developed using a percentage of stream design flow (as specified in Table 24).

The data used in the WLA are listed in Tables 23 and 24. The wasteload allocation results to maintain all applicable criteria are presented in Tables 25 and 26.

The permit for Brush Wellman contains loading limits based on flows measured at the USGS gage on the Portage River at Woodville (04195500). Therefore, in addition to the "typical" effluent limits to maintain water quality criteria described above (and presented in Table 25), effluent loadings that maintain the water quality criteria at various stream flows have been calculated. Effluent loading limits for each flow tier contained in the current permit are provided in Table 26.

Because Brush Wellman has operated under the tiered permit for a number of years, the typical long-term average flow data is highly variable and a reliable average effluent flow value is not available. Also, numerous scenarios for discharge are possible from outfall combinations. Finally, the concentrations of pollutants in the storm water are high enough to trigger a WLA regardless of the process waste concentrations. For all these reasons, the WLA for Brush Wellman is essentially a determination of allowable effluent load at this particular location on the Portage River and should be considered a load for the *total* facility, including all outfalls and possible sources.

The allowable loadings for each flow tier are allocations to maintain outside-mixing-zone WQS. Inside-mixing-zone WQS to prevent rapid lethality also apply to the discharge.

## Reasonable Potential

The preliminary effluent limits are the lowest average WLA (average PEL) and the maximum WLA (maximum PEL). To determine the reasonable potential of the discharger to exceed the WLA for each parameter, the facility's effluent quality is compared to the preliminary effluent limits. The average PEQ value (Table 22) is compared to the average PEL, and the maximum PEQ value is compared to the maximum PEL. Based on the calculated percentage of the respective average and maximum comparisons, the parameters are assigned to "groups", as listed in Table 27.

In this case, a defined effluent flow for each outfall is not available, so total allowable effluent loads are calculated for the Brush Wellman facility. Because groupings are based on comparisons of

concentrations, the calculation of total allowable loads prevents the grouping of the allocated parameters (groups 3, 4, and 5). The groupings are listed in Table 27.

## Whole Effluent Toxicity

Whole effluent toxicity or "WET" is the total toxic effect of an effluent on aquatic life measured directly with a toxicity test. Acute WET measures short term effects of the effluent while chronic WET measures longer term and potentially more subtle effects of the effluent. WET values are then compared to a calculated allowable effluent toxicity "AET" value. The allowable effluent toxicity (AET) is a factor considered in evaluating whole effluent toxicity. The AET calculations are similar to those for aquatic life criteria (using the chronic toxicity unit (TU<sub>c</sub>) and 7Q10 for average and the acute toxicity unit (TU<sub>a</sub>) and 1Q10 for maximum). Complicated by the presence of multiple outfalls, AET values to protect outside-mixing zone WQS cannot be calculated without defined effluent flow values. To meet inside-mixing-zone maximum narrative criteria, the acute AET would be 1.0 TUa.

The chronic toxicity unit (TU<sub>c</sub>) is defined as 100 divided by the IC<sub>25</sub>:

$$TU_c = 100$$

This equation applies outside the mixing zone for warmwater, modified warmwater, exceptional warmwater, coldwater, and seasonal salmonid use designations except when the following equation is more restrictive (Ceriodaphnia dubia only):

The acute toxicity unit (TU<sub>2</sub>) is defined as 100 divided by the LC50 for the most sensitive test species:

$$TU_a = 100$$

$$LC50$$

This equation applies outside the mixing zone for warmwater, modified warmwater, exceptional warmwater, coldwater, and seasonal salmonid use designations.

#### Effluent Limits/Hazard Management Decisions

The listing in Tables 25-27 reflect the hazard assessment done according to WLA procedures. Tables 28-39 shows the draft NPDES limits for Brush Wellman.

The limits for all of the outfalls are based on either treatment technology or water quality standards. Treatment technology standards are established either by federal effluent guidelines or Best Professional Judgment (BPJ). Water quality based limits are loadings to meet ambient WQS, or concentrations necessary to maintain inside-mixing-zone maximum (IMZM) WQS.

Many of the permit limits are being carried over into this draft permit. Those limits that are more restrictive than the previous permit are from the Great Lakes Water Quality Guidance Rule, 40 CFR 132, and related state requirements. For loading limits at calculated outfall 099, the more restrictive limits are caused by: (1) the use of 25% of the Portage River for mixing, as opposed to 33% used in previous

permits, and (2) more restrictive water quality criteria related to the GLI, and promulgated by Ohio EPA in October 1997. The 25% default mixing proportion is a requirement of OAC 3745-2-05(A)(2)(d).

The use of IMZM concentration limits is based on a Memorandum of Agreement between Ohio EPA and U.S. EPA on the implementation of GLI standards (Attachment B). Ohio's WQS have since 1990 included a clause that allows Ohio EPA to use the biological criteria to set water-quality-based limits that may be less restrictive than chemical-specific limits from the WLA. For example, if a discharger to a stream that is attaining the biological criteria may be granted an ammonia limit based on their existing loadings, rather than the wasteload allocation, because the existing loadings are associated with attainment of the aquatic life use. This approach has been used to set concentration-based limits for Brush Wellman in past permits. While effluent limits have been higher than IMZM standards, the effluent quality has been associated with stream use attainment (and non-toxic near-field conditions) since at least 1985, and therefore effluent limits reflect the existing discharge quality. The main reason for this apparent anomaly is that Brush discharges intermittently, and is not permitted to discharge during low flow periods of the Portage River.

U.S. EPA has never specifically authorized this approach to setting water-quality-based limits. The GLI rule reflects this view by requiring states to adopt the policy of independent applicability. This policy requires that chemical, biological and toxicity assessments be conducted independently, with data from one of these sources not allowed to influence decisions made under the others. To obtain U.S. EPA approval for Ohio's GLI rules, Director Jones signed a Memorandum of Agreement with U.S. EPA that states that the biocriteria narrative rule will not be used to develop alternative limits for GLI pollutants, which include all metal parameters and whole effluent toxicity. Because of the MOA, the permit contains IMZM-based limits for metals where the PEOmaximum values exceeds IMZM.

Effluent limits for ammonia-N and total dissolved solids (TDS) were assessed using the biocriteria narrative. These are not pollutants regulated under the GLI, and are not covered by the MOA. Ohio EPA's surveys from 1985 and 1994 show that attainment of Ohio's biological criteria has been consistent in the Portage River over time. Brush's pollutant concentrations have been stable or decreasing over time. Ohio EPA does not expect any other conditions to have changed that would indicate a degradation of biological quality in the Portage River.

Limits proposed for pH at all outfalls, and fecal coliform at outfall 011 are based on Water Quality Standards (OAC 3745-1).

The loading limits for outfalls 002/014 are treatment-technology-based limits for the Non-ferrous Metals Industry, found in 40 CFR Part 421, are based on the pounds of pollutant allowed to be discharged per million pounds of production. Because of Brush's ability to hold wastewater and discharge only when there is sufficient flow in the Portage River, these limits are applied on an annual basis, rather than the 30-day/daily basis used for continuous discharges. The plant production rates used are the annual rates for 1996-2000. Limits are calculated as follows: TSS limits (kg./day) = BPT (lbs./million lbs.) x production (million pounds/year) / 2.2 pounds/kilogram, or (for beryllium oxide production)

TSS limit = 5142 lbs. per  $10^6$  lbs. x 0.0895524  $10^6$  lbs per year. / 2.2 lbs. per kg. = 209.3 kg/year.

The effluent guideline calculations for all regulated pollutants are listed in Attachment A of this fact sheet.

The effluent guideline allowances are less than those in the current permit, due to decreased production and the deletion of an allowance for beryllium chip treatment, which Brush appears to have ceased doing.

The concentration limits for outfalls 002 and 014 are based on current permit conditions or IMZM. The current limits for ammonia and TDS were screened against limits associated with the biocriteria narrative (long-term PEQmax - 1985-2001 data), and were found to be adequate to maintain WQS.

For outfall 003, limits proposed for total suspended solids (TSS) and carbonaceous biochemical oxygen demand (CBOD<sub>5</sub>) are based on the design of the WWTP.

The limits for the stormwater outfalls (004-009) contain IMZM-based limits for beryllium and/or copper where effluent PEQs exceeded the IMZM. New monitoring requirements have also been included for metals that appear elevated in comparison to other discharges. This data will help determine if exceedances of IMZM are occurring, or if concentrations are high enough to cause toxicity.

For outfall 011, the concentration limits are based on existing permit conditions or IMZM. The TDS limits were screened against the biocriteria narrative requirements (again, using long term PEQmax), and new limits are needed. The current limits are significantly higher than those associated with biocriteria attainment. The draft limits are based on 1989-2001 PEQ data, with a 10% factor added to account for analytical variability. In these calculations, a few data points less than 4000 mg/l were eliminated as outliers. This left 391 values, and PEQs of 12252 mg/l avg. and 14437 mg/l max.

Additional monitoring requirements proposed at the final effluent, influent, upstream/downstream and sludge stations are included for all facilities in Ohio and vary according to the type and size of the discharge. In addition to permit compliance, this data is used to assist in the evaluation of effluent quality and treatment plant performance and for designing plant improvements and conducting future stream studies.

## Whole Effluent Toxicity Reasonable Potential

AET calculations are similar to aquatic life criteria wasteload allocation calculations. The  $Q_{7,10}$  and chronic toxicity unit (TU<sub>e</sub>) are used to calculated the average allowable AET and the  $Q_{1,10}$  and acute toxicity unit (TU<sub>a</sub>) are used to calculate the maximum allowable AET. For the Brush Wellman WWTP, the acute AET is 1.0 TU<sub>a</sub>. It is not possible to calculate a chronic AET without an effluent flow rate.

For dischargers in the Lake Erie Basin, toxicity is assessed by comparing this AET value to a PEQ value calculated from the effluent toxicity data available. If the PEQ is greater than the AET, toxicity limits are needed in the permit. This procedure was put in place by USEPA's promulgation of toxicity reasonable potential rules for Ohio on August 4, 2000. These rules replaced Ohio's rules for dischargers in the Lake Erie basin.

The one available effluent toxicity test for outfall 011 indicated that the acute AET was not being achieved. The PEQ calculated from this test result (using the statistical multiplier of 6.2) is 15.2 TUa. Based on this result, a toxicity limit and compliance schedule are needed in the permit. Because of the chemical similarity between outfall 011, and outfalls 002/014, toxicity limits are being proposed for all three discharge points.

Based on the reported chemical data for outfalls 002, 011 and 014, it is likely that dissolved solids, and for 002/014 ammonia, are among the toxic agents in the discharge. If Brush could establish through TIE studies that these were the only two toxicants in these outfalls, appropriate limits for TDS and/or ammonia could be used in place of acute toxicity limits.



Figure 1. Approximate location of Brush Wellman.



Figure 2.Portage River Study Area.

Table 2. Effluent Characterization and Decision Criteria

Summary of analytical results for Brush Wellman outfalls 2IE00000002 and 2IE00000011, and monitoring station 2IE00000900. All values are in  $\mu$ g/l unless otherwise indicated. 2C = Data from application form 2C; OEPA = data from analyses by Ohio EPA; ND = below detection (detection limit); NA = not analyzed.

|                       | (  | Outfall 002    |        | •        | Outfall 0 | 11            |         |          | Station | 900           |        |
|-----------------------|----|----------------|--------|----------|-----------|---------------|---------|----------|---------|---------------|--------|
|                       |    | Application F  | orm 2C | Ohio EPA |           | Application 1 | Form 2C | Ohio EPA |         | Application I | rom 2C |
| PARAMETER             | n  | mean           | max.   | 03/09/99 | n         | mean          | max.    | 03/09/99 | n       | mean          | max.   |
| BOD <sub>5</sub> mg/l | 1  | _              | 8      | <2.0     | 1         | _             | 5.0     | NA       | 1       | _             | <4     |
| COD mg/l              | î  |                | 280    | 60       | î         | _             | 150     | NA       | î       | <u>.</u>      | 140    |
| TSS mg/l              | 4  | 12             | 37     | 6        | 42        | 17            | 46      | NA       | î       | _             | <5     |
| TDS mg/l              | NA | NA             | NA.    | 8970     | NA.       | NA.           | NA.     | 4680     | NA.     | NA            | NA     |
| Oil&grease mg/l       | NA | NA             | NA     | 3.14     | 42        | 5             | 9       | NA       | 1       |               | <5     |
| Ammonia-N mg/l        | 4  | 29             | 41     | < 0.05   | 42        | 3.3           | 5.7     | 1.44     | 12      | 1.2           | 3.4    |
| NO3/NO2-N mg/l        | 1  | _              | 5      | 396      | 1         | _             | 440     | 197      | 12      | 190           | 538    |
| Nitrite-N mg/l        | NA | NA             | NA     | 9.68     | ÑΑ        | NA            | NA      | 3.54     | NA      | NA            | NA NA  |
| TKN mg/l              | NA | NA             | NA     | <0.2     | 1         |               | 2.8     | NA       | 1       | _             | 111    |
| Phosphorus mg/l       | 1  | _              | <0.02  | 0.24     | 12        | 0.12          | 0.24    | NA       | 1       |               | <0.02  |
| Fluoride mg/l         | 4  | 13             | 16     | 8.94     | 48        | 10            | 15      | NA       | 1 .     | ·             | 5.5    |
| Chlorine, T.R. mg/l   | i  |                | 0.02   | NA       | 1 .       | _             | < 0.05  | NA       | ī       |               | 0.02   |
| Aluminum              | î  | _              | 110    | 370      | 1         | _ * * .       | 540     | 230      | 1 .     |               | 170    |
| Antimony              | 1  | _              | 9.6    | NA       | 1         |               | <3.0    | NA       | 1       | _             | <3     |
| Arsenic               | ī  |                | 35     | <2.0     | 1         | <del></del>   | 18      | <2.0     | ī       | <u> -</u>     | 5.4    |
| Barium                | 1  | _              | <10    | 48       | 1         | _             | 39      | 55       | 1       | <del>-</del>  | 25     |
| Beryllium             | 4  | 20             | 30     | 19.9     | 42        | 50            | 90      | 59.5     | 12      | 48            | 90     |
| Boron                 | 1  | - 1            | 240    | NA       | 1         | _             | 110     | NA       | 1       |               | 78     |
| Cadmium               | 4  | 1.0            | 1.0    | 0.7      | 42        | 10            | 10      | 0.7      | 1       |               | <0.5   |
| Chromium              | 4  | 20             | 40     | <30      | 42        | 10            | 30      | <30      | 1       | _             | <20    |
| Cobalt                | 1  | <del>-</del> . | 12     | NA       | 1         | _             | <10     | NA       | 1       | _             | <10    |
| Copper                | 1  | 82             | 160    | 50       | 42        | 100           | 180     | 84       | 12      | 88            | 120    |
| Iron                  | 1  |                | 57     | 116      | 1         | _             | <40     | 115      | 1       |               | 85     |
| Manganese             | 1  | _              | 34     | 14       | 1         | _             | 22      | 65       | 1       | _             | 59     |
| Mercury               | 1  |                | <0.2   | 0.208    | 1         | <b>-</b> .    | <0.2    | NA       | 1       | _             | 0.2    |
| Molybdenum            | 1  |                | 360    | NA       | 1         | _ '-          | 150     | NA       | 1       | . j 🗕         | 48     |
| Nickel                | 1  | ·              | 150    | <40      | 42        | 58            | 140     | <40      | 12      | 29            | 110    |

Table 2. continued.

|                          |       | Outfall 002   |         |          | Outfall 0 | 11             |           |          | Station 9 |               | · ·    |
|--------------------------|-------|---------------|---------|----------|-----------|----------------|-----------|----------|-----------|---------------|--------|
|                          | Brusl | Application I | Form 2C | Ohio EPA | Brush     | Application F  | Form 2C 🐍 | Ohio EPA | Brush .   | Application I | rom 2C |
| PARAMETER                | n     | mean          | max.    | 03/09/99 | n         | mean           | max.      | 03/09/99 | <u>n</u>  | mean          | max.   |
| Potassium                | NA    | NA            | NA      | 15000    | NA        | NA             | NA        | 7000     | NA        | NA            | NA     |
| Fotassium<br>Selenium    | 1     | - NA          | 33      | <4       | 1         | — ·            | 49        | <2.0     | 1         | _             | 16     |
| Silver                   | 4     | <10           | <10     | <0.2     | 42        | 14             | 38        | NA       | 1         | _             | <10    |
| Strontium                | NA    | NA            | NA      | 7360     | NA        | NA             | NA S      | 5670     | NA        | NA            | NA     |
| Zinc                     | . 1   | _             | 20      | 11       | . 1       | _              | 50        | <10      | 12        | 30            | 90     |
| Cyanide, T.              | 4     | 100           | 400     | 5.78*    | 1         |                | 7         | <5*      | 12        | <10           | <10    |
| Bromochloromethane       | NA    | NA            | NA      | 2.59     | NA        | NA             | NA        | 0.74     | NA        | NA            | NA     |
| Bromoform                | 1     | _             | <5.0    | 3.09     | 1         | _              | <5.0      | 1.11     | 1         | _             | <5.0   |
| 1.2-Dichloroethane       | . 1   | _             | <5.0    | 0.87     | 1         | _              | <5.0      | < 0.5    | 1         |               | <5.0   |
| cis-1,2-Dichloroethylene | NA    | NA            | NA      | < 0.5    | NA        | NA             | NA        | 1.16     | NA        | NA            | NA     |
| Tetrachloroethylene      | 1     | _             | <5.0    | 1.2      | 1         | <b>-</b> , , , | <5.0      | 9.03     | 1         | . –           | <5.0   |
| PCBs                     | 1     | ·             | ND      | NA       | 1         | <u> </u>       | ND        | ND       | 36        | ND            | ND     |

<sup>\* -</sup> free cyanide result

Table 3. Effluent Characterization and Decision Criteria

Summary of analytical results for Brush Wellman outfalls 2IE00000004, 2IE00000005 and 2IE00000006. All data is from the company's Application Form 2C. All values are in  $\mu$ g/l unless otherwise indicated. 2C = Data from application form 2C; OEPA = data from analyses by Ohio EPA; ND = below detection (detection limit); NA = not analyzed.

|                                      |             | Outfall 004       |          |                              | Outfall 00:   | 5          |          | Outfall 006    |           |
|--------------------------------------|-------------|-------------------|----------|------------------------------|---------------|------------|----------|----------------|-----------|
| PARAMETER                            | n           | mean              | max.     | n                            | mean          | max.       | n        | mean           | max.      |
| COD mg/l                             | 1           | _                 | <20      | 1                            |               | 50         | 1        |                | 80        |
| TSS mg/l                             | 1           | <u> </u>          | 6        | 1                            |               | 32         | . 1      | - <del>.</del> |           |
| Oil&grease mg/l                      | 1           |                   | 5        | 1                            |               | <5         | 1        | · -            | 24        |
| Ammonia-N mg/l                       | 1           | · ·               | 0.8      | 1                            | <del></del>   | 0.5        | 1        | <del>-</del>   | <5<br>0.1 |
| NO3/NO2-N mg/I                       | NA          | NA                | NA       | 1                            | <del>-</del>  | 2.2        | NA       | -<br>NA        | 0.1       |
| TKN mg/l                             | NA<br>NA    | NA<br>NA          | NA<br>NA | NA                           | -<br>NA       | NA         | NA NA    | NA<br>NA       | NA        |
| <b>O</b> 1 .                         | NA          | NA<br>NA          | NA<br>NA | NA<br>NA                     |               |            | NA<br>NA |                | NA<br>NA  |
|                                      | ?           | INA               | 10       | NA.<br>3                     | NA            | NA         | . INA    | NA<br>0.7      | NA        |
| Fluoride mg/l<br>Chlorine, T.R. mg/l | ,<br>NA     | NA                | NA       |                              | —<br>N/A      | 5          |          | 0.7            | 5.0       |
| Aluminum                             | INAL<br>. 1 | INA.              |          | NA<br>1                      | NA            | NA         | NA<br>1  | NA             | NA        |
|                                      | roj‡.       | Squary Complete S | 120      | ear ga <mark>l</mark> ige in |               | 330        | 1        |                | 1800      |
| Barium<br>Danilian                   | 1           | _                 | 26       | "NA                          | NA            | NA<br>2600 | 10       |                | 75        |
| Beryllium                            | 1           | . <del>-</del>    | 65       | 5                            | 750           | 3600       | 10       | 25             | 150       |
| Boron                                | · 1         | _                 | <50      | 1                            |               | <50        | 1        | _              | <50       |
| Cadmium                              | 1           | _                 | <0.5     | . 1                          | _             | <0.5       | 1        | <del>-</del>   | <0.5      |
| Cobalt                               | 1           | _                 | <10      | 1                            | ·             | <10        | 1        | _              | <10       |
| Copper                               | 1           | _                 | 110      | ?                            | 540           | 860        | 10       | 69             | 120       |
| Iron                                 | 1           | _                 | 290      | . 1                          | _             | 840        | 1        | _              | 2800      |
| Lead                                 | 1           | . · -             | 3.4      | 1                            | <del></del> . | 12         | 1        | · ·            | 3.5       |
| Manganese                            | NA          | NA                | NA       | NA                           | NA            | NA         | NA       | NA             | NA.       |
| Titanium                             | 1           | · <del>-</del>    | <30      | 1 .                          | _             | <30        | 1        | _              | 110       |
| Zinc                                 | 1           | <u> </u>          | 320      | 1                            | _             | 220        | 1        |                | 55        |

Table 4. Effluent Characterization and Decision Criteria

Summary of analytical results for Brush Wellman outfalls 2IE00000007, 2IE00000008 and 2IE00000009. All data is from the company's Application Form 2C. All values are in  $\mu$ g/l unless otherwise indicated. PT = data from, pretreatment program reports; 2C = Data from application form 2C; OEPA = data from analyses by Ohio EPA; ND = below detection (detection limit); NA = not analyzed. Decision Criteria: PEQ<sub>avg</sub> = monthly averages; PEQ<sub>max</sub> = daily maximum analytical results.

|                    |      | Outfall 007                                     |      |      | Outfall 008      |      |    | Outfall 009                             |      |
|--------------------|------|-------------------------------------------------|------|------|------------------|------|----|-----------------------------------------|------|
| PARAMETER          | n    | mean                                            | max. | n.   | mean             | max. | n  | mean                                    | max. |
|                    |      |                                                 |      | P    | 18 83            |      | 4  |                                         | - 4  |
| COD mg/l           | 1.   | -                                               | 42   | 1    | · <del>-</del> : | 120  | 1  |                                         | 42   |
| TSS mg/l           | 1    | <b>-</b> ′                                      | 7    | 1    | -                | 47   | 1  |                                         | 19   |
| Oil&grease mg/l    | 1    | <b>-</b> ,                                      | 5    | 1    |                  | 8    | 1  |                                         | <5   |
| Ammonia-N mg/l     | 1    | _                                               | 0.3  | 1    | _                | 0.8  | 1  | - 150                                   | <0.5 |
| NO3/NO2-N mg/l     | 1    | -                                               | 5.1  | NA   | NA               | NA   | 1  | _                                       | 1.7  |
| TKN mg/l           | NA . | NA                                              | NA   | NA   | NA               | NA   | 1  | _                                       | 0.8  |
| Phosphorus mg/l    | NA   | NA                                              | NA   | NA   | NA               | NA   | 1  | _                                       | 0.12 |
| Fluoride mg/l      | 7    | 0.16                                            | 5.0  | 6    | 4                | 5    | 4  | 0.4                                     | 0.7  |
| Chlorine, T.R mg/l | NA   | NA                                              | NA   | NA   | NA               | NA   | 1  | _ : _ : _ : _ : _ : _ : _ : _ : _ : _ : | 0.02 |
| Aluminum           | 1    | _                                               | 210  | 1    |                  | 1200 | 1  | _                                       | 550  |
| Barium             | 1    | · _                                             | 90   | 1 -  |                  | 89   | 1  | . <del>-</del>                          | 86   |
| Beryllium          | 9    | 44                                              | 130  | 1    | _                | 1400 | 7  | 11                                      | 20   |
| Boron              | 1    | _                                               | 55   | 1    |                  | <50  | 1  |                                         | <50  |
| Cadmium            | 1    | _ ' ';                                          | <0.5 | 1    |                  | 4.3  | 1  | _ ,                                     | <0.5 |
| Cobalt             | 1    | _                                               | <10  | 1    | <u> </u>         | 20   | 1  | _                                       | <10  |
| Copper             | 10   | 230                                             | 720  | 1    | _                | 460  | 6  | 27                                      | 60   |
| Iron               | 1    | <u>, –                                     </u> | 330  | 1    | _                | 1600 | 1  | _                                       | 680  |
| Lead               | 1    | <del>-</del>                                    | <2.0 | 1    | _                | 7.2  | 1  | _                                       | <2.0 |
| Manganese          | NA   | NA                                              | NA   | NA . | NA               | NA   | 1  | <u></u>                                 | 47   |
| Titanium           | NA   | NA                                              | NA   | 1    | _ ***            | 150  | NA | NA                                      | NA   |
| Zinc               | 1    | _                                               | 150  | 1    | _                | 150  | 1  | - <u> </u>                              | 16   |

Table 5. Effluent Characterization and Decision Criteria

Summary of current permit limits and unaltered monthly operating report (MOR) data for Brush Wellman outfall 2IE00000002. All values are based on annual records unless otherwise indicated. N = Number of Analyses. \*= For pH, 5th percentile shown in place of 50th percentile; \*\* = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria:  $PEQ_{avg} = monthly$  average;  $PEQ_{max} = daily$  maximum analytical results.

|                    |            |                | CURRENT PER   |       | PERI     |     |       | THRU APR98 |               | . <b>D</b> i      | ECISION CRITER | RIA     |
|--------------------|------------|----------------|---------------|-------|----------|-----|-------|------------|---------------|-------------------|----------------|---------|
| PARAMETER '        | SEASON     | UNITS          | 30 DAY I      | DATLY | N        | 50  | PCTL  | 95 PCTL    | RANGE         | N                 | PEQavg.        | PEQmax. |
| AMMONIA NH3-N      | NOV-APR    | MG/L           | <del></del> . | 133   | 4        |     | 37    | 128        | 30-128        |                   |                | •       |
|                    |            | KG/DAY         | "             | 1972  | 4        | 52  | 2.324 | 79.125     | 42.354-79.125 |                   |                |         |
| BERYLIUM TOT REC   | ANNUAL     | UG/L           |               | 801   | 4        |     | 120   | 180        | 100-180       |                   |                |         |
|                    |            | KG/DAY         | <del></del>   | 12.5  | 4        | 0.0 | 05314 | 0.25412    | 0.0509-0.2541 |                   | • .            |         |
| CADMIUM TREC 0.001 | ANNUAL     | UG/L           | Monitor       |       | 4        |     | . 0   | 10         | 0-10          |                   |                |         |
|                    |            | KG/DAY         |               |       | 4        |     | . 0   | 0.02139    | 0-0.0214      |                   |                |         |
| CHROMIUM TOT 0.01  | ANNUAL     | UG/L           | · · ,         | 46    | . 2      |     | 10    | 10         | 10-10         |                   |                |         |
|                    |            | KG/DAY         | ·             | 5.05  | 2 ·      | 0.0 | 01412 | 0.02139    | 0.0141-0.0214 |                   |                |         |
| CHROMHEX TOT 0.001 | ANNUAL     | UG/L           | · ·           |       | 2        |     | 2     | 3          | 2-3           |                   |                |         |
|                    |            | KG/DAY         |               |       | 2        | 0.0 | 00424 | 0.00428    | 0.0042-0.0043 |                   |                |         |
| CHROMIUM CR, TOT   | ANNUAL     | UG/L           |               | 46    | 2        |     | 10    | 20         | 10-20         |                   |                |         |
|                    |            | KG/DAY         |               | 5.05  | 2        | 0.0 | 00409 | 0.00848    | 0.0041-0.0085 |                   |                | •       |
| CHROMIUM HEX-DIS   | ANNUAL     | UG/L           |               | 17    | 2        |     | 3     | 6          | 3-6           |                   |                |         |
|                    |            | KG/DAY         |               |       | 2        | 0.0 | 00123 | 0.00254    | 0.0012-0.0025 |                   |                |         |
| CONDUIT FLOW       | ANNUAL     | MGD            | Monitor       |       | 25       |     | 126   | 0.554      | 0.054-0.565   |                   |                |         |
| COPPER TOT REC     | ANNUAL     | UG/L           |               | 243   | . 2      | *.  | 80    | 100        | 80-100        |                   |                |         |
|                    |            | KG/DAY         |               | 20.5  | 2        | 0.0 | 3391  | 0.04088    | 0.0339-0.0409 |                   | •              |         |
| COPPER TREC 0.001  | ANNUAL     | UG/L           |               | 243   | 2        |     | 180   | 200        | 180-200       | -                 | •              |         |
|                    |            | KG/DAY         |               | 20.5  | 2        | 0.2 | 28236 | 0.38493    | 0.2824-0.3849 |                   |                |         |
| CYANIDE FREE       | ANNUAL     | MG/L           | Monitor       |       | 4        |     | 0     | 0          | 0-0           |                   |                |         |
| CYANIDE TOT        | ANNUAL     | MG/L           |               | 0.20  | 2        |     | Õ     | ŏ          | 0-0           |                   |                |         |
| 54,111,1513 101    | 111110112  | MG/L           |               | 2.7   | . 2      |     | ň     | Ö          | 0-0           |                   |                |         |
| FLUORIDE F, TOT    | ANNUAL     | MG/L           | ·1<br>· =→    | 35    | 4        | * * | 13    | 16         | 11-16         |                   |                |         |
| HOOKIDE 1,101      | 7111107111 | KG/DAY         |               | 674   | Δ        | . 5 | 3141  | 32.078     | 4.6631-32.078 | No. of the second |                |         |
| LEAD TOT REC       | ANNUAL     | UG/L           |               |       | 1        |     | 0 :   | 0          | 0-0           |                   |                |         |
| NICKEL TREC 0.01   | ANNUAL     | UG/L           | Monitor       |       | 1        |     | 50    | 130        | 30-130        |                   |                | •       |
| TOREL TREE 0.01    | MAMONI     | KG/DAY         |               |       | 4        | 0.0 | )5314 | 0.07059    | 0.0509-0.0706 |                   |                |         |
| PH                 | ANNUAL     | S.U.           | 6.5 to 9      | 5     | 4        |     | 7.6*  | 9.5        | 7.6-9.5       |                   |                |         |
| PHOS-T P-WET       | ANNUAL     | MG/L           | Monitor       |       | 4        |     | 0.01  | 0.05       | 0-0.05        |                   |                | 1 1 - 1 |
| THOO I I WEI       | 7111107111 | KG/DAY         | 1101111101    |       | Δ        |     | 0409  | 0.07059    | 0-0.0706      |                   |                |         |
| RESIDUE DIS-105C   | ANNUAL     | MG/L           |               | 21560 | . 4      |     | 5510  | 5590       | 3810-5590     |                   |                |         |
|                    | PHILAND    | KG/DAY         | <u> </u>      | 21300 | 4        | 22  | 3310  | 11783      | 2285.1-11783  |                   |                |         |
| RESIDUE TOT NFLT   | ANNUAL     | MG/L           |               | 41    | <b>4</b> | 23  | 1     | 5          | 1-5           |                   |                |         |
| MESTON TOT NETT    | PWMANT     | MG/L<br>KG/DAY | <u> </u>      | 656   | A .      | 0.4 | 2392  | 7.059      | 0.4088-7.059  | 1.                |                |         |
| SILVER TOT REC     | ANNUAL     | UG/L           |               | 42    | <b>4</b> | 0.4 | 10 -  | 14         | 10-14         |                   |                |         |
| STUADY IOT VEC     | PMMONT     | OG/Ti          |               | 74    | 4        |     | ΤΟ .  | 1.4        | TO-T#         |                   |                |         |

Table 6. Effluent Characterization and Decision Criteria

Summary of current permit limits and unaltered monthly operating report (MOR) data for Brush Wellman outfall 2IE00000003 and 2IE000000004. All values are based on annual records unless otherwise indicated. N = Number of Analyses. \* = For pH, 5th percentile shown in place of 50th percentile; \*\* = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria:  $PEQ_{avg} = monthly$  average;  $PEQ_{max} = daily$  maximum analytical results.

| BRUSH WELLMAN (2IE0)        | 0000) OU       | TFALL=003 |                |          | *.      |            |                  | 4.3  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------|----------------|-----------|----------------|----------|---------|------------|------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ,,,                         |                |           | CURRENT PERMIT | PERIOD   | = JAN95 | THRU DEC99 |                  |      | DECISION CRITERIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PARAMETER                   | SEASON         | UNITS     | 30 DAY DAILY   | <b>N</b> | 50 PCTL | 95 PCTL    | RANGE            | N    | PEQavg. PEQmax.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BOD 5 DAY                   | MAY-OCT        | MG/L      |                | 12       | 3       | 4          | 1-4              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             |                | KG/DAY    | <b></b>        | 12       | 0.17032 | 0.28766    | 0.0757-0.2877    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             | NOV-APR        | MG/L      |                | 12       | 3       | 5          | 3-6              | - 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             |                | KG/DAY    |                | 12       | 0.23845 | 0.28766    | 0-0.3407         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BOD 5 DAY                   | MAY-OCT        | MG/L      | 10 15          | 14       | 2.2     | 3.1        | 1.6-5.7          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *                           |                | KG/DAY    | <del></del>    | 14       | 0.13323 | 0.22294    | 0.0545-0.4531    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             | NOV-APR        | MG/L      | 10 15          | 17       | 2.6     | 6.3        | 1.7-6.7          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             |                | KG/DAY    |                | 17       | 0.22634 | 0.4542     | 0.1211-0.7101    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HLORINE TOT RESD            | ANNUAL         | MG/L      | <del></del>    | 8        | 0.05    | 0.07       | 0.05-0.07        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             | A section of   | KG/DAY    |                | <b>8</b> | . 0     | 0.00636    | 0-0.0064         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EC COLI MFM-FCBR            | ANNUAL         | /100ML    |                | 2        | 1       | 1          | 1-1              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OLOR SEVERITY               | ANNUAL         |           | Observation    | 1705     | 0       | 0          | 0-0              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ONDUIT FLOW                 | ANNUAL         | MGD       | Monitor        | 1589     | 0.017   | 0.023      | 0.001-0.182      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DOR SEVERITY UNIT           | ANNUAL         | 1         | Observation    | 1705     | . 0     | 0          | 0-0              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| H                           | ANNUAL         | S.U.      |                | 429      | 7*      | 7.7        | 6.7-8.2          | •    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ESIDUE TOT NFLT             | ANNUAL         | MG/L      | 12 18          | 247      | 2       | 7          | 0-23             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             | and the second | KG/DAY    |                | 247      | 0.13626 | 0.43149    | 0-2.7555         |      | and the second of the second o |
| URBID SEVERITY              | ANNUAL         | 1,        | Observation    | 1705     | 0       | 0          | 0-1              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                           |                |           |                |          |         | Section 1  |                  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             |                |           |                |          | *       |            |                  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RUSH WELLMAN (21E0)         | 0000) OU       | TFALL=004 | •              |          |         | satisfies  | Carrier Services |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             | and the same   |           | CURRENT PERMIT | PERIOR   |         | THRU DEC98 |                  |      | DECISION CRITERIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ARAMETER                    | SEASON         | UNITS     | 30 DAY DAILY   | N        | 50 PCTL | 95 PCTL    | RANGE            | И    | PEQavg. PEQmax.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ERYLIUM TOT REC             | ANNUAL         | UG/L      | Monitor        | 16       | 390     | 2280       | 20-5260          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             | •              | KG/DAY    | · •            | 16       | 0.03444 | 0.71673    | 0-2.4854         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ONDUIT FLOW                 | ANNUAL         | MGD       | Monitor        | 18       | 0.022   | 0.108      | 0.003-0.288      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OPPER TOT REC               | ANNUAL         | UG/L      | Monitor        | 15       | 250     | 1150       | 50-1210          | •    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| in the second of the second |                | KG/DAY    |                | 15       | 0.02271 | 0.3134     | 0-0.6541         | 2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OPPER TREC 0.001            | ANNUAL         | UG/L      | Monitor        | 2        | 150     | 240        | 150-240          |      | Carrier Carrier Carrier Carrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             |                | KG/DAY    |                | 2        | 0.00795 | 0.02634    | 0.0079-0.0263    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LUORIDE F, TOT              | ANNUAL         | MG/L      | Monitor        | 17       | 8.6     | 42.2       | 2.1-43.9         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             |                | KG/DAY    |                | 17       | 0.58289 | 5.0961     | 0-9.2657         | 2.25 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CBS WLSMPL                  | ANNUAL         | UG/L      | Monitor        | 4        | 0       | 4.3        | 0-4.3            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             | ANNUAL         | S.U.      |                | 15       | 5.9*    | 8.1        | 5.9-8.2          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 7. Effluent Characterization and Decision Criteria

Summary of current permit limits and unaltered monthly operating report (MOR) data for Brush Wellman outfalls 2IE00000005 and 2IE00000006. All values are based on annual records unless otherwise indicated. N = Number of Analyses. \*= For pH, 5th percentile shown in place of 50th percentile; \*\* = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria:  $PEQ_{avg} = monthly$  average;  $PEQ_{max} = daily$  maximum analytical results.

|                    | 00000) 00 | TFALL=005 | CURRENT 1 | PERMIT         | PERI  | DD = JAN95 | THRU AUG99 |              |    | DEC | CISION CRITER | IIA                                                                                                                                                                                                                              |
|--------------------|-----------|-----------|-----------|----------------|-------|------------|------------|--------------|----|-----|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PARAMETER          | SEASON    | UNITS     | 30 DAY    | DAILY          | N     | 50 PCTL    | 95 PCTL    | RANGE        |    | N   | PEQavg.       | PEQmax.                                                                                                                                                                                                                          |
| BERYLIUM TOT REC   | ANNUAL    | UG/L      | Monit     | or             | 47    | 30         | 200        | 10-3580      |    |     |               |                                                                                                                                                                                                                                  |
|                    |           | KG/DAY    |           |                | 47    | 0.0025     | 0.02725    | 0-0.1897     |    |     |               |                                                                                                                                                                                                                                  |
| CONDUIT FLOW       | ANNUAL    | MGD       | Monit     | or             | 47    | 0.022      | 0.072      | 0.007-0.216  |    |     |               | e village de la companya de la comp<br>La companya de la co |
| COPPER TOT REC     | ANNUAL    | UG/L      | Monit     | cor            | 20    | 320        | 1290       | 36-1670      |    |     |               |                                                                                                                                                                                                                                  |
|                    |           | KG/DAY    |           |                | 20    | 0.02665    | 0.22755    | 0-0.3189     |    |     |               | 140                                                                                                                                                                                                                              |
| OPPER TREC 0.001   | ANNUAL    | UG/L      | Monit     | or             | 25    | 300        | 1110       | 20-1150      |    |     |               |                                                                                                                                                                                                                                  |
|                    |           | KG/DAY    |           |                | 25    | 0.02665    | 0.07487    | 0.0023-0.079 |    | =   |               |                                                                                                                                                                                                                                  |
| LUORIDE F. TOT     | ANNUAL    | MG/L      | Monit     | or             | . 47  | 1          | 4.3        | 0-5          |    |     |               |                                                                                                                                                                                                                                  |
|                    | .**       | KG/DAY    |           | <del>-</del> - | 47    | 0.09008    | 0.40878    | 0-0.5723     |    |     |               |                                                                                                                                                                                                                                  |
| CBS WLSMPL         | ANNUAL    | UG/L      | Monit     | or             | 26    | . 0        | 0          | 0-0          |    |     |               |                                                                                                                                                                                                                                  |
| H                  | ANNUAL    | S.U.      |           | ·              | 21    | 7.3*       | 8          | 7.3-8.4      |    |     |               | *                                                                                                                                                                                                                                |
|                    |           |           |           |                |       |            |            |              |    |     | :             |                                                                                                                                                                                                                                  |
|                    |           |           |           |                |       |            |            | •            |    |     | • •           |                                                                                                                                                                                                                                  |
| RUSH WELLMAN (21E) | 10000) OU | TFALL=006 |           | *              |       | /          |            |              |    |     |               |                                                                                                                                                                                                                                  |
|                    |           |           | CURRENT I | PERMIT         | PERIC |            | THRU DEC99 |              |    | DEC | CISION CRITER |                                                                                                                                                                                                                                  |
| ARAMETER           | SEASON    | UNITS     | 30 DAY    | DAILY          | N     | 50 PCTL    | 95 PCTL    | RANGE        | 1. | N   | PEQavg.       | PEQmax.                                                                                                                                                                                                                          |
| ERYLIUM TOT REC    | ANNUAL    | UG/L      | Monit     | or             | 54    | 10         | 20         | 0-150        |    |     |               |                                                                                                                                                                                                                                  |
|                    | 7777      | KG/DAY    |           | '              | 54    | 0.00053    | 0.00273    | 0-0.0082     |    |     |               |                                                                                                                                                                                                                                  |
| ONDUIT FLOW        | ANNUAL    | MGD       | Monit     | or             | 54    | 0.014      | 0.072      | 0.003-0.108  |    |     |               |                                                                                                                                                                                                                                  |
| OPPER TOT REC      | ANNUAL    | UG/L      | Monit     |                | 21    | 120        | 260        | 50-280       |    |     |               | *                                                                                                                                                                                                                                |
|                    |           | KG/DAY    |           |                | 21    | 0.0106     | 0.04088    | 0-0.1145     |    |     |               |                                                                                                                                                                                                                                  |
| OPPER TREC 0.001   | ANNUAL    | UG/L      | Monit     | or             | 30    | 60         | 120        | 0-210        |    |     |               |                                                                                                                                                                                                                                  |
| OPPER TREE O. OUI  |           | KG/DAY    |           |                | 30    | 0.00318    | 0.0109     | 0-0.0395     |    |     |               | 1. 1 · 1 · 1 · 1 · 1 · 1                                                                                                                                                                                                         |
| JPPER TREC 0.001   | * ******  | MG/L      | Monit     | or             | 54    | 0.8        | 1.2        | 0-1.3        |    |     |               |                                                                                                                                                                                                                                  |
|                    | ANNUAL    |           |           |                |       |            |            |              |    |     |               |                                                                                                                                                                                                                                  |
| LUORIDE F, TOT     | ANNUAL    | KG/DAY    |           |                | 54    | 0.03785    | 0.13626    | 0-0.2453     |    |     |               |                                                                                                                                                                                                                                  |

Table 8. Effluent Characterization and Decision Criteria

Summary of current permit limits and unaltered monthly operating report (MOR) data for Brush Wellman outfalls 2IE00000007 and 2IE000000008. All values are based on annual records unless otherwise indicated. N = Number of Analyses. \* = For pH, 5th percentile shown in place of 50th percentile; \*\* = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria:  $PEQ_{avg} = monthly$  average;  $PEQ_{max} = daily$  maximum analytical results.

|                                                                                           |                            |                                                                   | CURRENT                  | Permit                |    | PERIC                                       | D = JAN95                                                          | THRU DEC99                                                           |                                                                                                  | I | DECISION CRITERIA |         |
|-------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------|--------------------------|-----------------------|----|---------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---|-------------------|---------|
| PARAMETER                                                                                 | SEASON                     | UNITS                                                             | 30 DAY                   | DAILY                 |    | N                                           | 50 PCTL                                                            | 95 PCTL                                                              | RANGE                                                                                            | N | PEQavg. PEQmax    | ζ.      |
| BERYLIUM TOT REC                                                                          | ANNUAL                     | UG/L                                                              | Moni                     | tor                   |    | 51                                          | 30                                                                 | 190                                                                  | 10-550                                                                                           |   |                   |         |
|                                                                                           | . *                        | KG/DAY                                                            |                          | <u></u> -             |    | 51                                          | 0.00151                                                            | 0.00878                                                              | 0-0.0537                                                                                         |   |                   |         |
| CONDUIT FLOW                                                                              | ANNUAL                     | MGD                                                               | Moni                     | tor                   |    | 52                                          | 0.012                                                              | 0.029                                                                | 0.003-0.043                                                                                      | - |                   |         |
| OPPER TOT REC                                                                             | ANNUAL                     | UG/L                                                              | Moni                     | tor                   |    | 21                                          | 200                                                                | 600                                                                  | 60-700                                                                                           |   |                   |         |
|                                                                                           |                            | KG/DAY                                                            | ' . '                    |                       | *, | 21                                          | 0.00916                                                            | 0.05269                                                              | 0-0.1139                                                                                         |   |                   |         |
| OPPER TREC 0.001                                                                          | ANNUAL                     | UG/L                                                              | Moni                     | tor                   |    | 29                                          | 160                                                                | 720                                                                  | 0-1500                                                                                           |   |                   |         |
|                                                                                           |                            | KG/DAY                                                            |                          |                       |    | 29                                          | 0.00636                                                            | 0.03974                                                              | 0-0.04                                                                                           |   |                   |         |
| LUORIDE F, TOT                                                                            | ANNUAL                     | MG/L                                                              | Moni                     | tor                   |    | 51                                          | 2                                                                  | 4.1                                                                  | 0.8-8.2                                                                                          |   |                   |         |
| •                                                                                         |                            | KG/DAY                                                            |                          |                       |    | 51                                          | 0.07494                                                            | 0.33081                                                              | 0-0.5696                                                                                         |   |                   |         |
| CBS WLSMPL                                                                                | ANNUAL                     | UG/L                                                              | Moni                     | tor                   |    | 32                                          | 0                                                                  | 0                                                                    | 0-70                                                                                             |   |                   |         |
| #                                                                                         | ANNUAL                     | s.v.                                                              |                          |                       |    | 21                                          | 7.2*                                                               | 7.7                                                                  | 7.2-7.9                                                                                          |   |                   |         |
|                                                                                           |                            |                                                                   |                          |                       |    |                                             |                                                                    |                                                                      |                                                                                                  |   |                   |         |
|                                                                                           |                            |                                                                   |                          |                       |    |                                             |                                                                    |                                                                      |                                                                                                  |   |                   |         |
| RUSH WELLMAN (21E0                                                                        | 0000) 00                   | TFALL=008                                                         | Ţ.                       |                       |    |                                             |                                                                    |                                                                      |                                                                                                  |   |                   |         |
| • • • • • • • • • • • • • • • • • • • •                                                   |                            |                                                                   | CURRENT                  | PERMIT                |    | PERIC                                       | 77 - 77 MOE                                                        | THRU AUG98                                                           |                                                                                                  |   | DECISION CRITERIA |         |
|                                                                                           |                            |                                                                   |                          |                       |    | EMPL                                        | D = OMM33                                                          | THEO WORDS                                                           |                                                                                                  |   | VECTOTOM CUTTERIN |         |
| ARAMETER                                                                                  | SEASON                     | UNITS                                                             | 30 DAY                   | DAILY                 |    | И                                           | 50 PCTL                                                            | 95 PCTL                                                              | RANGE                                                                                            | N | PEQavg. PEQmax    | ζ.      |
|                                                                                           |                            |                                                                   | 30 DAY                   | DAILY                 |    | N                                           | 50 PCTL                                                            | 95 PCTL                                                              |                                                                                                  |   |                   | ζ,      |
|                                                                                           | <b>SEASON</b> ANNUAL       | ng/r                                                              |                          | DAILY                 |    | N<br>13                                     | 50 PCTL<br>1300                                                    | <b>95 PCTL</b> 5200                                                  | 18-5780                                                                                          |   |                   | د.<br>ر |
| ERYLIUM TOT REC                                                                           | ANNUAL                     | UG/L<br>KG/DAY                                                    | 30 DAY  Moni             | <b>DAILY</b> tor      |    | N<br>13<br>13                               | 1300<br>0.05829                                                    | 95 PCTL<br>5200<br>0.24481                                           | 18-5780<br>0-0.4813                                                                              |   |                   | ٠.      |
| ERYLIUM TOT REC                                                                           | ANNUAL<br>ANNUAL           | UG/L<br>KG/DAY<br>MGD                                             | Moni Moni                | DAILY tor tor         |    | N<br>13<br>13<br>14                         | 1300<br>0.05829<br>0.01                                            | 95 PCTL<br>5200<br>0.24481<br>0.043                                  | 18-5780<br>0-0.4813<br>0.007-0.044                                                               |   |                   |         |
| ERYLIUM TOT REC                                                                           | ANNUAL                     | UG/L<br>KG/DAY<br>MGD<br>UG/L                                     | 30 DAY  Moni             | DAILY tor tor         |    | 13<br>13<br>14<br>13                        | 1300<br>0.05829<br>0.01<br>160                                     | 5200<br>0.24481<br>0.043<br>920                                      | 18-5780<br>0-0.4813<br>0.007-0.044<br>80-980                                                     |   |                   |         |
| ERYLIUM TOT REC ONDUIT FLOW OPPER TOT REC                                                 | ANNUAL<br>ANNUAL<br>ANNUAL | UG/L<br>KG/DAY<br>MGD<br>UG/L<br>KG/DAY                           | Moni Moni Moni Moni      | DAILY tor tor tor     |    | N<br>13<br>13<br>14                         | 1300<br>0.05829<br>0.01<br>160<br>0.00424                          | 5200<br>0.24481<br>0.043<br>920<br>0.06964                           | 18-5780<br>0-0.4813<br>0.007-0.044<br>80-980<br>0-0.1351                                         |   |                   |         |
| ERYLIUM TOT REC ONDUIT FLOW OPPER TOT REC                                                 | ANNUAL<br>ANNUAL           | UG/L<br>KG/DAY<br>MGD<br>UG/L<br>KG/DAY<br>UG/L                   | Moni Moni                | DAILY tor tor tor     |    | 13<br>13<br>14<br>13                        | 1300<br>0.05829<br>0.01<br>160<br>0.00424<br>500                   | 5200<br>0.24481<br>0.043<br>920<br>0.06964<br>500                    | 18-5780<br>0-0.4813<br>0.007-0.044<br>80-980<br>0-0.1351<br>500-500                              |   |                   |         |
| ERYLIUM TOT REC ONDUIT FLOW OPPER TOT REC OPPER TREC 0.001                                | ANNUAL<br>ANNUAL<br>ANNUAL | UG/L<br>KG/DAY<br>MGD<br>UG/L<br>KG/DAY<br>UG/L<br>KG/DAY         | Moni Moni Moni Moni Moni | DAILY tor tor tor tor |    | N 13 13 14 13 13 13 11 1                    | 1300<br>0.05829<br>0.01<br>160<br>0.00424<br>500<br>0.01893        | 5200<br>0.24481<br>0.043<br>920<br>0.06964<br>500<br>0.01893         | 18-5780<br>0-0.4813<br>0.007-0.044<br>80-980<br>0-0.1351<br>500-500<br>0.0189-0.0189             |   |                   |         |
| ERYLIUM TOT REC ONDUIT FLOW OPPER TOT REC OPPER TREC 0.001                                | ANNUAL<br>ANNUAL<br>ANNUAL | UG/L<br>KG/DAY<br>MGD<br>UG/L<br>KG/DAY<br>UG/L<br>KG/DAY<br>MG/L | Moni Moni Moni Moni      | DAILY tor tor tor tor |    | N 13 13 14 13 13 14 13 14 14 15 16 17 17 18 | 1300<br>0.05829<br>0.01<br>160<br>0.00424<br>500<br>0.01893<br>4.6 | 5200<br>0.24481<br>0.043<br>920<br>0.06964<br>500<br>0.01893<br>12.3 | 18-5780<br>0-0.4813<br>0.007-0.044<br>80-980<br>0-0.1351<br>500-500<br>0.0189-0.0189<br>1.3-16.8 |   |                   |         |
| ERYLIUM TOT REC CONDUIT FLOW COPPER TOT REC COPPER TREC 0.001 CLUORIDE F, TOT COES WLSMPL | ANNUAL<br>ANNUAL<br>ANNUAL | UG/L<br>KG/DAY<br>MGD<br>UG/L<br>KG/DAY<br>UG/L<br>KG/DAY         | Moni Moni Moni Moni Moni | tor tor tor tor       |    | N 13 13 14 13 13 13 11 1                    | 1300<br>0.05829<br>0.01<br>160<br>0.00424<br>500<br>0.01893        | 5200<br>0.24481<br>0.043<br>920<br>0.06964<br>500<br>0.01893         | 18-5780<br>0-0.4813<br>0.007-0.044<br>80-980<br>0-0.1351<br>500-500<br>0.0189-0.0189             |   |                   |         |

Table 9. Effluent Characterization and Decision Criteria

Summary of current permit limits and unaltered monthly operating report (MOR) data for Brush Wellman outfall 2IE00000009. All values are based on annual records unless otherwise indicated. N = Number of Analyses. \* = For pH, 5th percentile shown in place of 50th percentile; \*\* = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria:  $PEQ_{avg} = monthly$  average;  $PEQ_{max} = daily$  maximum analytical results.

| ,                    |        |        | CURRENT PERM | <b>II</b> T | PERIOD | = JAN95 | THRU JUN99 |             | DEC: | ISION CRITER | CA.     |
|----------------------|--------|--------|--------------|-------------|--------|---------|------------|-------------|------|--------------|---------|
| PARAMETER            | SEASON | UNITS  | 30 DAY D     | AILY        | N      | 50 PCTL | 95 PCTL    | RANGE       | N    | PEQavg.      | PEQmax. |
| ERYLIUM TOT REC      | ANNUAL | UG/L   | Monitor      |             | 30     | ?<br>10 | 10         | 0-20        |      |              |         |
| MARIDION TOT NEC     | HMMOHL | KG/DAY |              | <b></b> '   | 30     | 0.00083 | 0.01635    | 0-0.0218    |      |              |         |
| ONDUIT FLOW          | ANNUAL | MGD    | Monitor      |             | 30     | 0.072   | 0.432      | 0.007-0.432 |      |              |         |
| OPPER TOT REC        | ANNUAL | UG/L   | Monitor      |             | 15     | 30      | 60         | 10-70       |      |              |         |
|                      |        | KG/DAY |              |             | 15     | 0.00818 | 0.02725    | 0-0.1145    |      |              |         |
| OPPER TREC 0.001     | ANNUAL | UG/L   | Monitor      |             | 15     | 30      | 60         | 0-90        |      |              |         |
|                      |        | KG/DAY |              |             | 15     | 0.00659 | 0.0327     | 0-0.1472    |      |              |         |
| LUORIDE F, TOT       | ANNUAL | MG/L   | Monitor      |             | 30     | 0.4     | 4 2 1      | 0-4.1       |      |              | 1.2     |
| in the second second |        | KG/DAY |              |             | 30     | 0.10863 | 0.65405    | 0-1.0356    |      |              |         |
| PH · ·               | ANNUAL | S.U.   | 6.5 to 9.    | .0          | 29     | 7.6*    | 9          | 7.6-9.1     |      |              |         |

Table 10. Effluent Characterization and Decision Criteria

Summary of current permit limits and unaltered monthly operating report (MOR) data for Brush Wellman outfall 2IE00000011. All values are based on annual records unless otherwise indicated. N = Number of Analyses. \* = For pH, 5th percentile shown in place of 50th percentile; \*\* = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria:  $PEQ_{avg} = monthly$  average;  $PEQ_{max} = daily$  maximum analytical results.

| BRUSH WELLMAN (21E0                     | 0000) 00    | TFALL=011 |                |                  |         |            |               |                     |                                       |
|-----------------------------------------|-------------|-----------|----------------|------------------|---------|------------|---------------|---------------------|---------------------------------------|
|                                         |             | *         | CURRENT PERMIT | PERIOD           | = JAN95 | THRU DEC99 |               | DECIS               | ON CRITERIA                           |
| PARAMETER                               | SEASON      | UNITS     | 30 DAY DAILY   | N                | 50 PCTL | 95 PCTL    | RANGE         | N                   | PEQavg. PEQmax.                       |
| AMMONIA NH3-N                           | MAY-OCT     | MG/L      | 13             | 80               | 2.8     | 5.1        | 1.2-5.9       |                     |                                       |
|                                         |             | KG/DAY    | · · ·          | 80               | . 0     | 5.3887     | 0-17.955      |                     |                                       |
|                                         | NOV-APR     | MG/L      | 13             | 73               | 4       | 8.4        | 1.4-12        |                     |                                       |
|                                         |             | KG/DAY    | ·              | 73               | 0       | 20.984     | 0-45.291      |                     |                                       |
| BARIUM TOT REC                          | ANNUAL      | UG/L      |                | 28               | 26      | 30         | 15-30         |                     |                                       |
|                                         |             | KG/DAY    |                | 28               | 0.03316 | 0.08139    | 0.0095-0.0852 |                     |                                       |
| BERYLIUM TOT REC                        | ANNUAL      | UG/L      | 102            | 154              | 20      | 60         | 10-100        |                     |                                       |
|                                         |             | KG/DAY    | , ·            | 154              | 0       | 0.03634    | 0-0.2192      |                     |                                       |
| CADMIUM TOT REC                         | ANNUAL      | UG/L      | <del></del> 26 | 59               | 10      | 10         | 0-15          |                     |                                       |
|                                         |             | KG/DAY    |                | 59               | 0.00719 | 0.02343    | 0-0.073       |                     |                                       |
| CADMIUM TREC 0.001                      | ANNUAL      | UG/L      | 26             | 83               | 10      | 10         | 0-10          |                     |                                       |
| CHLORINE TOT RESD                       | ANNUAL      | MG/L      | 0.0            | 38 43            | 0       | 0.05       | 0-50          |                     |                                       |
|                                         |             | KG/DAY    |                | 43               | 0       | 0.07267    | 0-70.969      |                     |                                       |
| CHROMIUM TOT 0.01                       | ANNUAL      | UG/L      | Monitor        | 88               | 20      | 30         | 10-40         |                     |                                       |
| CHROMHEX TOT 0.001                      | ANNUAL      | UG/L      | <u></u>        | 87               | 2       | 5          | 1-8           |                     |                                       |
| CHROMIUM CR, TOT                        | ANNUAL      | UG/L      | Monitor        | 61               | 20      | 30         | 10-40         |                     |                                       |
|                                         |             | KG/DAY    |                | 61               | 0.02226 | 0.06783    | 0.0101-0.2135 |                     |                                       |
| CHROMIUM HEX-DIS                        | ANNUAL      | UG/L      | 26 47          | 61               | 3       | 10         | 0-20          |                     |                                       |
|                                         |             | KG/DAY    | <u></u>        | 61               | 0.00337 | 0.01431    | 0-0.0584      |                     |                                       |
| FEC COLI MFM-FCBR                       | ANNUAL      | /100ML    | 1000 200       |                  | 1       | 200        | 0-1600        |                     |                                       |
| CONDUIT FLOW                            | ANNUAL      | MGD       | Monitor        | 354              | 0.346   | 0.847      | 0.01-1.97     | and the second      |                                       |
| COPPER TOT REC                          | ANNUAL      | UG/L      | 416            |                  | 120     | 200        | 10-1600       |                     |                                       |
|                                         |             | KG/DAY    |                | 61               | 0.14307 | 0.33475    | 0-1.3149      |                     |                                       |
| COPPER TREC 0.001                       | ANNUAL      | UG/L      | 416            |                  | 110     | 180        | 30-270        |                     |                                       |
| CYANIDE F, AMENA                        | ANNUAL      | MG/L      |                | 4                | 0       | 0          | 0-0           |                     | and the second second                 |
| CYANIDE FREE, AMENA                     | ANNUAL      | MG/L      | fi, <u></u>    | 3                | Ď       | ŏ          | 0-0           | But the same of the |                                       |
| CYANIDE TOT                             | ANNUAL      | MG/L      |                | 41               | ň       | 20         | 0-20          |                     |                                       |
| VIII                                    |             | KG/DAY    |                | 41               | Ö       | 21.423     | 0-146.1       |                     |                                       |
| FLUORIDE F, TOT                         | ANNUAL      | MG/L      | 16             | 154              | 9.5     | 14         | 3.2-16        |                     |                                       |
| 110011111111111111111111111111111111111 | IMMOILE     | KG/DAY    |                | 154              | 0       | 23.061     | 0-99.349      | and the second of   |                                       |
| LEAD TOT REC                            | ANNUAL      | UG/L      |                | 57               | 10      | 20.001     | 0-30.343      |                     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| HEAD TOT REC                            | MMMOMI      | KG/DAY    |                | 5 <i>7</i><br>57 | 0.01022 | 0.04323    | 0-30          |                     |                                       |
| NICKEL TOT REC                          | ANNUAL      | UG/L      | Monitor        | 61               | 120     | 150        | 10-170        | *                   |                                       |
| NICKEL IOI KEC                          | AMMOAL      |           | MOUTCOL        |                  |         |            |               |                     |                                       |
| NEGRET MDEG A 62                        | 7 MATERIA 7 | KG/DAY    |                | 61               | 0.10333 | 0.32646    | 0.0101-1.0958 |                     |                                       |
| NICKEL TREC 0.01                        | ANNUAL      | UG/L      | Monitor        | 88               | 100     | 160        | 10-160        |                     |                                       |

| BRUSH | WELLMAN | (2IE00000) | OUTFALL=011 |
|-------|---------|------------|-------------|
|-------|---------|------------|-------------|

| PARAMETER        | SEASON | UNITS  | CURRENT 1       | PERMIT<br>DAILY | PERI<br>N | OD = JAN95<br>50 PCTL | THRU DEC99<br>95 PCTL | RANGE     | DECI<br>N | ISION CRITERIA<br>PEQavg. PEQmax. |
|------------------|--------|--------|-----------------|-----------------|-----------|-----------------------|-----------------------|-----------|-----------|-----------------------------------|
| OIL GRSE TOT     | ANNUAL | MG/L   | 12              | 20              | 154       | 4                     | 8                     | 1-40      |           |                                   |
|                  |        | KG/DAY |                 |                 | 154       | . 0                   | 8.1756                | 0-31.794  |           |                                   |
| PH               | ANNUAL | s.v.   | 6.5 to          | 9.5             | 921       | 7.3*                  | . 9                   | 6.5-9.4   |           |                                   |
| PHOS-T P-WET     | ANNUAL | MG/L   | Moni            | tor             | 94        | 0.11                  | 10.2                  | 0.02-280  |           |                                   |
|                  |        | KG/DAY |                 |                 | 94        | 0.06586               | 0.64723               | 0-1534.1  |           |                                   |
| RESIDUE DIS-105C | ANNUAL | MG/L   |                 | 25000           | 154       | 10420                 | 12815                 | 655-13615 |           |                                   |
|                  |        | KG/DAY | , . <del></del> | - <del>-</del>  | 154       | 0                     | 24216                 | 0-80648   |           |                                   |
| RESIDUE TOT NFLT | ANNUAL | MG/L   | 30              | 45              | 175       | 16                    | 36                    | 2-2216    |           |                                   |
|                  |        | KG/DAY |                 | . <del></del> . | 175       | 0                     | 43.527                | 0-1476.2  |           |                                   |
| SILVER TOT REC   | ANNUAL | UG/L   |                 | 50              | 126       | 24                    | 38                    | 2-44      |           | •                                 |
|                  |        | KG/DAY |                 | . <del></del>   | 126       | , <b>0</b>            | 0.04428               | 0-0.2045  |           |                                   |
|                  |        |        |                 |                 |           |                       | •                     | •         |           |                                   |

Table 11. Effluent Characterization and Decision Criteria

Summary of current permit limits and unaltered monthly operating report (MOR) data for Brush Wellman outfall 2IE00000014. All values are based on annual records unless otherwise indicated. N = Number of Analyses. \*= For pH, 5th percentile shown in place of 50th percentile; \*\* = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria:  $PEQ_{avg} = monthly$  average;  $PEQ_{max} = daily$  maximum analytical results.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         | CURRENT PERMIT | PERIOD |         | THRU MAY99 |               |   |     | DECIS: | ION CRITER | RIA     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------------|--------|---------|------------|---------------|---|-----|--------|------------|---------|
| ARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SEASON  | UNITS   | 30 DAY DAILY   | N      | 50 PCTL | 95 PCTL    | RANGE         |   | N   | - 1 d. | PEQavg.    | PEQmax. |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANNUAL  | 2       |                | 4      | 0.396   | 0.458      | 0.325-0.458   |   |     |        | 14.<br>1   |         |
| MMONIA NH3-N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MAY-OCT | MG/L    | 133            | 6      | 23      | 110        | 20-110        |   |     |        |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | KG/DAY  | 1972           | 6      | 7,1423  | 25.833     | 1.9871-25.833 |   |     |        | 10 mm      |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOV-APR | MG/L    | 133            | 12     | 33      | 71         | 16.5-83.5     | 1 |     |        |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | KG/DAY  | 1972           | 12     | 65.738  | 144.89     | 0-220.9       |   |     |        |            |         |
| ERYLIUM TOT REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANNUAL  | UG/L    | 801            | 18     | 20      | 210        | 0-470         |   |     |        |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | KG/DAY  | 12.5           | 18     | 0.01427 | 0.31491    | 0-1.5477      |   |     | 200    |            |         |
| ADMIUM TREC 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANNUAL  | UG/L    | Monitor        | 18     | 10      | 10         | 0-10          |   |     |        |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | KG/DAY  | <del></del>    | 18     | 0.00727 | 0.03293    | 0-0.0333      |   |     |        |            |         |
| HROMIUM TOT 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ANNUAL  | UG/L    | 46             | 18     | 10      | 25         | 0-40          |   |     |        |            |         |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | KG/DAY  | 5.05           | 18     | 0.0126  | 0.03327    | 0-0.0763      |   | 1   |        |            |         |
| ROMHEX TOT 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ANNUAL  | UG/L    | 17             | 18     | 2       | 12         | 2-36          |   |     | •      |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | KG/DAY  |                | 18     | 0.00285 | 0.01664    | 0-0.0366      |   |     |        |            |         |
| NDUIT FLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ANNUAL  | MGD     | Monitor        | 41     | 0.1     | 0.834      | 0.012-0.879   |   |     |        |            |         |
| OPPER TREC 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ANNUAL  | UG/L    | 243            | 18     | 60      | 180        | 20-230        |   |     |        |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | KG/DAY  | 20.5           | 18     | 0.04281 | 0.59273    | 0-0.7156      |   |     |        |            |         |
| ANIDE FREE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ANŃUAL  | MG/L    | Monitor        | 18     | 0       | 0.02       | 0-0.04        |   |     | 100    |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | KG/DAY  |                | 18     | . 0     | 0.01575    | 0-0.0291      |   |     |        |            |         |
| ANIDE TOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ANNUAL  | MG/L    | 0.20           | 18     | 0       | 0          | 0-0           |   |     |        |            |         |
| UORIDE F, TOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ANNUAL  | MG/L    | 35             | 18     | 15      | 23         | 11-32         | * |     |        |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | KG/DAY  | <b>⊢−</b> 674  | 18     | 18.693  | 56.559     | 0-62.566      |   |     |        |            |         |
| CKEL TREC 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ANNUAL  | UG/L    | Monitor        | 18     | 70      | 90         | 40-110        |   | 100 |        |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | KG/DAY  |                | 18     | 0.08266 | 0.22097    | 0-0.2441      |   |     |        |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANNUAL  | s.u.    | 6.5 to 9.5     | 18     | 7.1*    | 9.5        | 7.1-9.5       |   | 4.  |        |            |         |
| OS-T P-WET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ANNUAL  | MG/L    | Monitor        | 17     | 0.02    | 0.21       | 0-20          |   |     |        |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | KG/DAY  |                | 17     | 0.02464 | 0.16635    | 0-31.491      |   |     |        |            |         |
| SIDUE DIS-105C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ANNUAL  | MG/L    | 21560          | 18     | 6032    | 8275       | 3920-8275     |   |     |        | * 4        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | KG/DAY  |                | 18     | 6659.6  | 17141      | 0-19692       |   |     |        |            |         |
| SIDUE TOT NFLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ANNUAL  | MG/L    | 41             | 18     | 6       | 15         | 1-37          |   |     |        |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | KG/DAY  | 656            | 18     | 4.3603  | 24.89      | 0-30.507      |   |     |        |            |         |
| LVER TOT REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ANNUAL  | UG/L    | 42             | 18     | 14      | 19         | 7-19          |   |     |        |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | KG/DAY  |                | 18     | 0.01343 | 0.05323    | 0-0.0626      |   |     |        |            |         |
| the second secon |         | no, bni |                |        | 0.01040 | V. 000225, | 0 0.0020      |   |     |        |            |         |

Table 12. Effluent Characterization and Decision Criteria

Summary of current permit limits and unaltered monthly operating report (MOR) data for Brush Wellman outfall 2IE00000041. All values are based on annual records unless otherwise indicated. N = Number of Analyses. \* = For pH, 5th percentile shown in place of 50th percentile; \*\* = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria:  $PEQ_{avg} = Monthly$  average;  $PEQ_{max} = Monthly$  average daily maximum analytical results.

| ,<br>PARAMETER   | CEA COM  | INITMO | CURRENT PI |       | PERI |         | THRU NOV99 | D2.1707       | . " | DEC: | ISION CRITER |                                          |
|------------------|----------|--------|------------|-------|------|---------|------------|---------------|-----|------|--------------|------------------------------------------|
| ARAMETER         | SEASON   | UNITS  | 30 DAY     | DAILY | N    | 50 PCTL | 95 PCTL    | RANGE         |     | N    | PEQavg.      | PEQmax.                                  |
| MMONIA NH3-N     | MAY-OCT  | MG/L   |            | : ·   | 13   | 2.7     | 20         | 1.1-21        |     |      |              | en e |
|                  |          | KG/DAY | 2.68       |       | 13   | 1.5844  | 2.849      | 0.5204-3.6116 | 14. |      |              |                                          |
| •                | NOV-APR  | MG/L   |            | '     | 4    | 2.5     | 4.8        | 2-4.8         |     |      |              |                                          |
|                  |          | KG/DAY | 28.4       |       | 4    | 1.1544  | 5.1779     | 0.8176-5.1779 |     |      |              |                                          |
| RYLIUM TOT REC   | ANNUAL . | UG/L   |            |       | -19  | 20      | - 60       | 0-100         |     |      |              |                                          |
|                  |          | KG/DAY | 1.4        | 36.7  | 19   | 0.01461 | 0.05204    | 0-0.0579      |     |      |              |                                          |
| DMIUM TREC 0.001 | ANNUAL   | UG/L   | ·          |       | 16   | 10      | 10         | 0-10          |     |      |              |                                          |
|                  |          | KG/DAY | 0.04       | 0.238 | 16   | 0.00409 | 0.01041    | 0-0.0108      |     |      |              |                                          |
| ROMIUM TOT 0.01  | ANNUAL   | UG/L   | · ·        |       | 16   | . 10    | 20         | 10-40         |     |      |              |                                          |
|                  |          | KG/DAY | 1.19       | 57.6  | 16   | 0.00924 | 0.01461    | 0.0009-0.0278 |     |      |              |                                          |
| ROMHEX TOT 0.001 | ANNUAL   | UG/L   |            |       | 16   | 4       | . 6        | 2-6           |     |      |              |                                          |
|                  |          | KG/DAY | 0.15       | 0.21  | 16   | 0.00271 | 0.00539    | 0.0005-0.0056 |     |      |              |                                          |
| NDUIT FLOW       | ANNUAL   | MGD    | Monito     | or    | 107  | 0.154   | 0.367      | 0.019-1.028   | •   |      |              |                                          |
| PPER TREC 0.001  | ANNUAL   | UG/L   |            | ~-    | 16   | 100     | 140        | 20-180        |     |      |              |                                          |
|                  |          | KG/DAY | 0.339      | 0.607 | 16   | 0.05995 | 0.10424    | 0.0019-0.1945 |     |      |              |                                          |
| ANIDE FREE       | ANNUAL   | MG/L   |            | ~-    | 2    | 0       | 0          | 0-0           |     |      | 4            |                                          |
| CKEL TREC 0.01   | ANNUAL   | UG/L   |            |       | 16   | 70      | 160        | 10-160        |     |      |              |                                          |
|                  |          | KG/DAY | 2.52       | 51.9  | 16   | 0.03497 | 0.11688    | 0.0058-0.2223 |     |      |              |                                          |
| SIDUE DIS-105C   | ANNUAL   | MG/L   |            | ~-    | 17   | 10570   | 12290      | 6715-12750    |     |      |              |                                          |
|                  |          | KG/DAY | 13122      | 13122 | 17   | 6196.4  | 10367      | 643.45-17072  |     |      |              |                                          |
| LVER TOT REC     | ANNUAL   | UG/L   |            |       | 18   | 22      | 42         | 5-44          |     |      |              |                                          |
|                  |          | KG/DAY | 0.018      | 0.124 | 18   | 0.01199 | 0.02045    | 0.0013-0.0431 |     |      |              |                                          |

Table 13. Effluent Characterization and Decision Criteria

Summary of current permit limits and unaltered monthly operating report (MOR) data for Brush Wellman outfall 2IE00000042. All values are based on annual records unless otherwise indicated. N = Number of Analyses. \* = For pH, 5th percentile shown in place of 50th percentile; \* = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria:  $PEQ_{avg} = Monthly$  average;  $PEQ_{max} = Monthly$  average daily maximum analytical results.

| BRUSH WELLMAN (21E0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0000) OU | TFALL=042 |               |              |            |                      |                       |               |          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|---------------|--------------|------------|----------------------|-----------------------|---------------|----------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SEASON   | UNITS     | CURRENT PER   | MIT<br>DAILY | PERIO<br>N | D = JAN97<br>50 PCTL | THRU DEC99<br>95 PCTL | RANGE         | DEC<br>N | ISION CRITERIA<br>PEQavg. PE | Omax.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           |               |              |            |                      |                       |               |          |                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AMMONIA NH3-N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAY-OCT  | MG/L      |               |              | 12         | . 3.3                | 4.4                   | 2.1-5.1       |          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | KG/DAY    | 5.36          | 32.69        | 12         | 2.8554               | 5.0711                | 1.8282-5.1325 |          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a de la companya de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NOV-APR  | MG/L      | <del></del> ( | <b></b> ,    | 8          | 3.4                  | 5.2                   | 2.1-5.2       | •        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | KG/DAY    | 56.84         | 212.69       | 8          | 2.7328               | 9.7426                | 1.5518-9.7426 |          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BERYLIUM TOT REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANNUAL   | UG/L      | ; <u></u> ·   | ·            | 20         | 20                   | 50                    | 10-60         |          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | KG/DAY    | 2.81          | 73           | 20         | 0.01938              | 0.04826               | 0.0087-0.1329 |          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CADMIUM TREC 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ANNUAL   | UG/L      |               | `            | 16         | 10                   | 10                    | 0-10          |          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | KG/DAY    | 0.08          | 0.48         | 16         | 0.00806              | 0.01533               | 0-0.0221      |          |                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CHROMIUM TOT 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ANNUAL   | UG/L      |               | `            | 16         | 20                   | 20                    | 10-30         |          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | KG/DAY    | 2.38          | 115          | 16         | 0.01612              | 0.02566               | 0.0097-0.0307 |          |                              | The state of the s |
| CHROMHEX TOT 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ANNUAL   | UG/L      |               |              | 16         | . 2                  | 6                     | 2-8           |          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | KG/DAY    | 0.31          | 0.42         | 16         | 0.00204              | 0.01027               | 0.0012-0.0133 |          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONDUIT FLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ANNUAL   | MGD       | Monitor       |              | 123        | 0.272                | 0.606                 | 0.037-0.734   |          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COPPER TREC 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ANNUAL   | UG/L      | . <del></del> | "            | 16         | 100                  | 140                   | 70-270        |          |                              | + .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | KG/DAY    | 0.68          | 1.22         | 16         | 0.10659              | 0.155                 | 0.0621-0.1615 |          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CYANIDE FREE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ANNUAL   | MG/L      |               |              | 1          | 0                    | 0                     | 0-0           |          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NICKEL TREC 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANNUAL   | UG/L      |               | <del>_</del> | 16         | 100                  | 130                   | 10-140        |          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A Commence of the Commence of |          | KG/DAY    | 5.04          | 103.84       | 16         | 0.08705              | 0.15367               | 0.0097-0.154  |          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RESIDUE DIS-105C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANNUAL   | MG/L      |               |              | 20         | 10520                | 11700                 | 7010-12210    |          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100      | KG/DAY    | 26243         | 26243        | - 20       | 9400.3               | 14076                 | 5704.4-20614  |          |                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SILVER TOT REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANNUAL   | UG/L      | <b>_</b> _    |              | 20         | 24                   | 42                    | 2-44          |          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | KG/DAY    | 0.036         | 0.247        | 20         | 0.02566              | 0.03534               | 0.0019-0.0358 |          | the transfer of              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           |               |              |            |                      |                       |               |          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 14. Effluent Characterization and Decision Criteria

Summary of current permit limits and unaltered monthly operating report (MOR) data for Brush Wellman outfall 2IE00000043. All values are based on annual records unless otherwise indicated. N = Number of Analyses. \* = For pH, 5th percentile shown in place of 50th percentile; \* = For pH, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria:  $PEQ_{avg} = Monthly$  average;  $PEQ_{max} = Monthly$  average analytical results.

|                  | •       |        | CURRENT PER  | MIT       | PERIOD | = JAN97    | THRU NOV99 |               |   | DECISION CRITERIA |
|------------------|---------|--------|--------------|-----------|--------|------------|------------|---------------|---|-------------------|
| ARAMETER         | SEASON  | UNITS  | 30 DAY 1     | DAILY     | N      | 50 PCTL    | 95 PCTL    | RANGE         | N | PEQavg. PEQmax.   |
| MMONIA NH3-N     | MAY-OCT | MG/L   | <del></del>  |           | 6      | 3          | 37         | 1.6-37        |   |                   |
| · · ·            | *       | KG/DAY | 8.04         | 46.69     | 6      | 4.4284     | 8.6298     | 2.1135-8.6298 |   |                   |
|                  | NOV-APR | MG/L   |              |           | 3      | 5.5        | 26         | 2.6-26        |   |                   |
|                  |         | KG/DAY | 38.69        | 85.26     | 3      | 4.3717     | 40.939     | 2.7358-40.939 |   |                   |
| RYLIUM TOT REC   | ANNUAL  | UG/L   | <del></del>  | '-        | 9      | 20         | 200        | 0-200         |   |                   |
|                  | . ,     | KG/DAY | 4.21         | 110       | 9      | 0.02226    | 0.31491    | 0-0.3149      |   |                   |
| DMIUM TREC 0.001 | ANNUAL  | UG/L   |              |           | . 8    | 10         | 10         | 0-10          |   |                   |
| i i              | i.      | KG/DAY | 0.12         | 0.72      | 8      | 0.01177    | 0.02271    | 0-0.0227      |   |                   |
| ROMIUM TOT 0.01  | ANNUAL  | UG/L   |              |           | 9      | 10         | 30         | 0-30          |   |                   |
|                  |         | KG/DAY | 3.57         | 173       | 9      | 0.02105    | 0.02952    | 0-0.0295      |   |                   |
| ROMHEX TOT 0.001 | ANNUAL  | UG/L   | ·            |           | 9      | , <b>2</b> | 8          | 2-8           |   |                   |
|                  |         | KG/DAY | 0.46         | 0.63      | 9      | 0.00223    | 0.0126     | 0.0004-0.0126 |   |                   |
| NDUIT FLOW       | ANNUAL  | MGD ·  | Monitor      |           | 52     | 0.362      | 0.616      | 0.018-1.113   |   |                   |
| PPER TREC 0.001  | ANNUAL  | UG/L   |              |           | 9      | 110        | 170        | 20-170        |   |                   |
|                  | * *     | KG/DAY | 1.02         | 1.82      | 9      | 0.09538    | 0.36336    | 0.0039-0.3634 |   |                   |
| ANIDE FREE       | ANNUAL  | MG/L   | · · ·        | ' <u></u> | 2      | 0          | 0          | 0-0           | • |                   |
| CKEL TREC 0.01   | ANNUAL  | UG/L   |              |           | 9      | 70         | 130        | 20-130        |   |                   |
| •                |         | KG/DAY | 7.56         | 156       | 9      | 0.07154    | 0.16238    | 0.0135-0.1624 |   |                   |
| SIDUE DIS-105C   | ANNUAL  | MG/L   | · ·          |           | · 9    | 8025       | 12290      | 5450-12290    |   |                   |
|                  |         | KG/DAY | 39365        | 42924     | 9      | 9768.7     | 22051      | 1052-22051    |   |                   |
| LVER TOT REC     | ANNUAL  | UG/L   | <sub>f</sub> | ` <u></u> | 9      | 16         | 38         | 2-38          |   |                   |
|                  |         | KG/DAY | 0.05         | 0.37      | . 9    | 0.02519    | 0.05314    | 0.0021-0.0531 |   |                   |

Table 15. Effluent Characterization and Decision Criteria

Summary of current permit limits and unaltered monthly operating report (MOR) data for Brush Wellman outfall 2IE00000044. All values are based on annual records unless otherwise indicated. N = Number of Analyses. \*= For pH, 5th percentile shown in place of 50th percentile; \*\* = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria:  $PEQ_{avg} = monthly$  average;  $PEQ_{max} = daily$  maximum analytical results.

|                    | ,       |        |            |        |     |             |         |               |                 |                 | 4                                        |
|--------------------|---------|--------|------------|--------|-----|-------------|---------|---------------|-----------------|-----------------|------------------------------------------|
|                    |         |        | CURRENT PE |        |     | COD = JAN97 |         |               |                 | DECISION CRITER | LA.                                      |
| PARAMETER          | SEASON  | UNITS  | 30 DAY     | DAILY  | N   | 50 PCTL     | 95 PCTL | RANGE         | Ŋ               | PEQavg.         | PEQmax.                                  |
| AMMONIA NH3-N      | MAY-OCT | MG/L   |            |        | 7   | 3.6         | 23      | 2.4-23        |                 |                 |                                          |
|                    |         | KG/DAY | 10.7       | 62.69  | 7   | 8.4345      | 16.715  | 3.391-16.715  |                 |                 |                                          |
|                    | NOV-APR | MG/L   |            |        | 3   | 2.6         | 4.6     | 2.5-4.6       |                 |                 |                                          |
|                    |         | KG/DAY | 113.68     | 425.69 | 3   | 4.7729      | 10.116  | 3.0942-10.116 |                 |                 |                                          |
| BERYLIUM TOT REC   | ANNUAL  | UG/L   | . <b></b>  |        | 10  | 10          | 60      | 10-60         |                 |                 |                                          |
|                    | *       | KG/DAY | 5.62       | 147    | 10  | 0.01836     | 0.07358 | 0.0073-0.0736 |                 |                 |                                          |
| CADMIUM TREC 0.001 | ANNUAL  | UG/L   | *** .      |        | 10  | 10          | 10      | 0-10          |                 |                 | en e |
|                    |         | KG/DAY | 0.16       | 0.95   | 10  | 0.01226     | 0.02343 | 0-0.0234      |                 |                 |                                          |
| CHROMIUM TOT 0.01  | ANNUAL  | UG/L   | ·          |        | 10  | 20          | 40      | 10-40         | Take the second |                 |                                          |
| **                 |         | KG/DAY | 4.76       | 231    | 10  | 0.02252     | 0.09372 | 0.0145-0.0937 |                 |                 | *                                        |
| CHROMHEX TOT 0.001 | ANNUAL  | UG/L   | ·          |        | : 9 | 2           | 12      | 1-12          |                 | 1994            |                                          |
|                    |         | KG/DAY | 0.62       | 0.84   | 9   | 0.00245     | 0.00872 | 0.0022-0.0087 |                 |                 |                                          |
| CONDUIT FLOW       | ANNUAL  | MGD    | Monito     | or     | 105 | 0.523       | 0.817   | 0.167-1.195   |                 |                 |                                          |
| COPPER TREC 0.001  | ANNUAL  | UG/L   |            |        | 10  | 100         | 150     | 50-150        |                 |                 |                                          |
| *                  |         | KG/DAY | 1.35       | 2.43   | 10  | 0.16881     | 0.33781 | 0.0509-0.3378 |                 |                 |                                          |
| CYANIDE FREE       | ANNUAL  | MG/L   |            | '      | 1   | 0.04        | 0.04    | 0.04-0.04     |                 |                 |                                          |
|                    | ,       | KG/DAY | 0.67       | 2.58   | 1   | 0.02907     | 0.02907 | 0.0291-0.0291 |                 |                 |                                          |
| NICKEL TREC 0.01   | ANNUAL  | UG/L   | ·          |        | 10  | 100         | 140     | 50-140        |                 |                 |                                          |
|                    |         | KG/DAY | 10.08      | 208    | 10  | 0.15942     | 0.28115 | 0.0581-0.2812 |                 |                 |                                          |
| RESIDUE DIS-105C   | ANNUAL  | MG/L   | ·          |        | 10  | 9085        | 11085   | 13-11085      |                 |                 |                                          |
|                    |         | KG/DAY | 52487      | 57232  | 10  | 11773       | 24027   | 28.637-24027  |                 |                 |                                          |
| SILVER TOT REC     | ANNUAL  | UG/L   | ;          |        | 10  | 22          | 29      | 12-29         |                 |                 |                                          |
| •                  |         | KG/DAY | 0.07       | 0.50   | 10  | 0.02971     | 0.05728 | 0.0087-0.0573 |                 |                 | The second second                        |

Table 16. Effluent Characterization and Decision Criteria

Summary of current permit limits and unaltered monthly operating report (MOR) data for Brush Wellman outfall 2IE00000045. All values are based on annual records unless otherwise indicated. N = Number of Analyses. \* = For pH, 5th percentile shown in place of 50th percentile; \*\* = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria:  $PEQ_{avg} = MORP_{avg} = MO$ 

| ARAMETER                                | SEASON     | UNITS  | CURRENT I                             | PERMIT<br>DAILY | PERI<br>N | FEB97<br>50 PCTL | THRU JUL99<br>95 PCTL | RANGE         | n   | DECISION CRITERI<br>PEQavg. | A<br>PEQmax. |
|-----------------------------------------|------------|--------|---------------------------------------|-----------------|-----------|------------------|-----------------------|---------------|-----|-----------------------------|--------------|
|                                         |            |        |                                       | 1907 1 1 1      | -         | 2.4              | 110                   | 1 4 110       |     |                             |              |
| MMONIA NH3-N                            | MAY-OCT    | MG/L   |                                       | 120.60          | · /       | 3.4              | 110                   | 1.4-110       |     |                             |              |
|                                         |            | KG/DAY | 22.3                                  | 130.69          | /         | 8.3777           | 25.833                | 3.6828-25.833 |     |                             |              |
|                                         | NOV-APR    | MG/L   |                                       |                 | 9         | 3.3              | 6.1                   | 1-6.1         |     |                             |              |
|                                         |            | KG/DAY | 236.83                                | 881.69          | 9         | 8.3936           | 15.543                | 3.1529-15.543 |     |                             |              |
| ERYLIUM TOT REC                         | ANNUAL     | UG/L   |                                       | 200             | 16        | 20               | 80                    | 0-210         |     |                             |              |
|                                         |            | KG/DAY | 11.7                                  | 306             | 16        | 0.04111          | 0.13221               | 0-0.2386      |     |                             |              |
| ADMIUM TREC 0.001                       | ANNUAL     | UG/L   |                                       |                 | 16        | 10               | 10                    | 0-10          |     | 4                           |              |
|                                         |            | KG/DAY | 0.34                                  | 1.99            | . 16      | 0.02055          | 0.02983               | 0-0.0315      |     |                             |              |
| HROMIUM TOT 0.01                        | ANNUAL     | UG/L   |                                       | <del></del>     | 16        | 20               | 20                    | 0-20          |     |                             |              |
|                                         |            | KG/DAY | 9.92                                  | 480             | 16        | 0.03936          | 0.05322               | 0-0.0597      |     |                             |              |
| HROMHEX TOT 0.001                       | ANNUAL     | UG/L   |                                       | - <u></u>       | 16        | 2                | 4                     | 1-4           |     |                             |              |
| - * · · · · · · · · · · · · · · · · · · |            | KG/DAY | 1.28                                  | 1.75            | 16        | 0.00503          | 0.01007               | 0.0005-0.0126 |     |                             |              |
| NDUIT FLOW                              | ANNUAL     | MGD    | Monit                                 | or              | 76        | 0.62             | 0.833                 | 0.008-1.181   |     |                             |              |
| OPPER TREC 0.001                        | ANNUAL     | UG/L   |                                       | <del></del>     | 16        | 100              | 200                   | 30-200        |     |                             |              |
|                                         | 1 11 11    | KG/DAY | 2.82                                  | 5.06            | 16        | 0.23618          | 0.42574               | 0.0208-0.5034 |     |                             |              |
| YANIDE FREE                             | ANNUAL     | MG/L   | · · · · · · · · · · · · · · · · · · · |                 | 4         | . 0              | 0                     | 0-0           | 400 |                             |              |
| CKEL TREC 0.01                          | ANNUAL     | UG/L   |                                       |                 | 16        | 90               | 160                   | 10-160        |     |                             | 1.0          |
|                                         | Section 18 | KG/DAY | 21                                    | 433             | 16        | 0.2207           | 0.4221                | 0.0189-0.4257 |     |                             | 1.0          |
| ESIDUE DIS-105C                         | ANNUAL     | MG/L   | <u> </u>                              |                 | 16        | 8930             | 12520                 | 20-13090      |     |                             |              |
|                                         |            | KG/DAY | 109347                                | 119233          | 16        | 20892            | 32982                 | 46.934-33957  |     |                             |              |
| LVER TOT REC                            | ANNUAL     | UG/L   | 203047                                |                 | 16        | 20032            | 33                    | 7-34          |     | ·                           |              |
| THVIII TOT THE                          | THITOPIL   | KG/DAY | 0.15                                  | 1.03            | 16        | 0.05755          | 0.08545               | 0.0016-0.0871 |     |                             |              |

Table 17. Effluent Characterization and Decision Criteria

Summary of current permit limits and unaltered monthly operating report (MOR) data for Brush Wellman outfall 2IE00000046. All values are based on annual records unless otherwise indicated. N = Number of Analyses. \* = For pH, 5th percentile shown in place of 50th percentile; \*\* = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria:  $PEQ_{avg} = monthly$  average;  $PEQ_{max} = daily$  maximum analytical results.

| and the second second second |           | in the contract of | CURRENT PER | RMIT    | PERI | OD = MAR97 | THRU JUN99 |               |   | DECISION CRITERIA |
|------------------------------|-----------|--------------------|-------------|---------|------|------------|------------|---------------|---|-------------------|
| PARAMETER                    | SEASON    | UNITS              | 30 DAY      | DAILY   | N    | 50 PCTL    | 95 PCTL    | RANGE         | N | PEQavg. PEQmax.   |
| MMONIA NH3-N                 | MAY-OCT   | MG/L               |             |         | 7    | 3          | 3.9        | 2.3-3.9       |   |                   |
|                              | 1212 001  | KG/DAY             | 39.3        | 230.69  | 7    | 7.4716     | 10.428     | 2.3732-10.428 |   |                   |
|                              | NOV-APR   | MG/L               |             |         | 25   | 4.6        | 44         | 2.1-71        |   |                   |
|                              | NOV HER   | KG/DAY             | 416.83      | 1560.69 | 25   | 11.77      | 144.89     | 3.1794-220.9  |   |                   |
| ERYLIUM TOT REC              | ANNUAL    | UG/L               |             |         | 49   | 10         | 100        | 0-470         |   |                   |
|                              | 111110112 | KG/DAY             | 20.6        | 538     | 49   | 0.02491    | 0.21385    | 0-1.5477      |   |                   |
| ADMIUM TREC 0.001            | ANNUAL    | UG/L               |             |         | 35   | 10         | 10         | 0-10          |   |                   |
|                              |           | KG/DAY             | 0.60        | 3.50    | 35   | 0.02226    | 0.03293    | 0-0,0417      |   |                   |
| ROMIUM TOT 0.01              | ANNUAL    | UG/L               |             |         | 34   | 20         | 30         | 10-40         |   |                   |
|                              |           | KG/DAY             | 17.45       | 845     | 34   | 0.03437    | 0.06525    | 0.0114-0.0834 |   |                   |
| ROMHEX TOT 0.001             | ANNUAL    | UG/L               |             |         | 34   | 2          | 5          | 1-36          |   |                   |
| 101 01001                    |           | KG/DAY             | 2.26        | 3.08    | 34   | 0.00498    | 0.01664    | 0.0016-0.0587 |   |                   |
| NDUIT FLOW                   | ANNUAL    | MGD                | Monito      |         | 207  | 0.598      | 0.87       | 0.054-2.003   |   |                   |
| OPPER TREC 0.001             | ANNUAL    | UG/L               |             |         | 35   | 110        | 190        | 30-230        | i |                   |
|                              |           | KG/DAY             | 4.97        | 8.90    | 35   | 0.28236    | 0.45882    | 0.0343-0.7156 |   |                   |
| ANIDE FREE                   | ANNUAL    | MG/L               |             |         | 11   | 0          | 0          | 0-0.4         |   |                   |
|                              | 4         | KG/DAY             | 2.46        | 9.45    | 11   | ō          | Ö          | 0-0.7343      |   |                   |
| CKEL TREC 0.01               | ANNUAL    | UG/L               |             |         | 34   | 100        | 160        | 20-160        |   |                   |
|                              |           | KG/DAY             | 36.96       | 762     | 34   | 0.21075    | 0.39425    | 0.0229-0.4421 |   |                   |
| SIDUE DIS-105C               | ANNUAL    | MG/L               | <del></del> |         | 32   | 8695       | 11550      | 3810-12200    |   |                   |
|                              |           | KG/DAY             | 192451      | 209850  | 32   | 16909      | 29274      | 5379-31257    |   |                   |
| LVER TOT REC                 | ANNUAL    | UG/L               | <u></u>     |         | 34   | 23         | 34         | 12-34         |   |                   |
|                              |           | KG/DAY             | 0.26        | 1.81    | 34   | 0.05323    | 0.09176    | 0.0169-0.0981 |   |                   |

Table 18. Effluent Characterization and Decision Criteria

Summary of current permit limits and unaltered monthly operating report (MOR) data for Brush Wellman outfall 2IE00000900. All values are based on annual records unless otherwise indicated. N = Number of Analyses. \* = For pH, 5th percentile shown in place of 50th percentile; \*\* = For dissolved oxygen, 5th percentile shown in place of 95th percentile; A = 7 day average. Decision Criteria:  $PEQ_{avg}$  = monthly average;  $PEQ_{max}$  = daily maximum analytical results.

| •                |         |       | CURRENT PERMIT | PERIOD | = JAN97 | THRU DEC99 |           |   | DECISION CRITER | IA      |
|------------------|---------|-------|----------------|--------|---------|------------|-----------|---|-----------------|---------|
| PARAMETER        | SEASON  | Units | 30 DAY DAILY   | N      | 50 PCTL | 95 PCTL    | RANGE     | N | PEQavg.         | PEQmax. |
| AMMONIA NH3-N    | MAY-OCT | MG/L  | Monitor        | 17     | 0.7     | 16         | _0−53     |   |                 |         |
|                  | NOV-APR | MG/L  | Monitor        | 17     | 1.8     | 5.4        | 0-33      |   |                 |         |
| SERYLIUM TOT REC | ANNUAL  | UG/L  | Monitor        | 30     | . 40    | 90         | 10-160    |   |                 | *       |
| OPPER TREC 0.001 | ANNUAL  | UG/L  | Monitor        | 33     | 100     | 290        | 0-370     |   |                 |         |
| YANIDE FREE      | ANNUAL  | MG/L  | Monitor        | 30     | . 0     | 0          | 0-0       |   |                 | ~       |
| ICKEL TREC 0.01  | ANNUAL  | UG/L  | Monitor        | 32     | 50      | 120        | 10-130    |   |                 |         |
| ITRITE NO2-N     | ANNUAL  | MG/L  | Monitor        | 34     | . · 2   | 12         | 0.04-16   |   |                 |         |
| 02&NO3 N-TOT     | ANNUAL  | MG/L  | Monitor        | 34     | 113     | 588        | 3-1085    |   |                 |         |
| CB 1016          | ANNUAL  | UG/L  | None detected  | 31     | 0       | 0          | 0-0       |   |                 |         |
| CB 1221          | ANNUAL  | UG/L  | None detected  | 31     | 0       | 0          | 0-0       |   |                 | ~       |
| CB 1232          | ANNUAL  | UG/L  | None detected  | 33     | . 0     | 0          | 0~60      |   |                 |         |
| CB 1242          | ANNUAL  | UG/L  | None detected  | 32     | 0       | 0          | 0-0       |   |                 |         |
| CB 1248          | ANNUAL  | UG/L  | None detected  | 31     | 0       | 0          | 0-0       |   |                 |         |
| CB 1254          | ANNUAL  | UG/L  | None detected  | 31     | 0       | 0          | 0~0       |   |                 | -       |
| CB 1260          | ANNUAL  | UG/L  | None detected  | 27     | 0       | 0          | 0-0       |   |                 |         |
| H .              | ANNUAL  | s.u.  | Monitor        | 34     | 7.4*    | 8.1        | 7.2-9.2   |   |                 |         |
| ESIDUE DIS-105C  | ANNUAL  | MG/L  | Monitor        | 34     | 4985    | 11875      | 371-13400 |   |                 |         |
| INC TOTAL 0.01   | ANNUAL  | UG/L  | Monitor        | 32     | 30      | . 110      | 10-140    |   |                 | •       |

Table 19. Summary of ACUTE toxicity test results on the Brush Wellman effluent from outfalls 2IE00000011 and 2IE00000900.

| TEST         |                 | 3 = + 1 | Ceriodaphnia       | dubia 48 hoi | ır   |     |     | ,  | Fathead Mir        | nows 48 ho | ur   |        |
|--------------|-----------------|---------|--------------------|--------------|------|-----|-----|----|--------------------|------------|------|--------|
| DATE(a)      | UP <sup>b</sup> | Ce      | LC <sub>50</sub> d | %Mi          | TUas | NFh | UP⁵ | C. | LC <sub>50</sub> d | %M¹ :      | TUag | NF     |
| Outfall 011  |                 |         |                    |              | . 14 |     |     |    |                    |            |      |        |
| 03/09/99 (O) | 0               | 0-10    | 40.6               | 100          | 2.46 | 0   | 0   | 0  | 70.7               | NR         | 1.41 | 0      |
| Station 900  |                 |         |                    |              |      |     |     |    |                    |            |      |        |
| 03/09/99 (O) | 0               | 0-10    | <100               | 75-100       | >1.0 | 0   | 0   | 0  | >100               | 0          | <1.0 | 0      |
| 03/09/99 (O) | 0               | 0-10    | <100               | 75-100       | >1.0 | 0   | 0   | 0  | >100               |            | 0    | 0 <1.0 |

<sup>&</sup>lt;sup>a</sup> O = EPA test; E = entity test <sup>b</sup> UP = upstream control water <sup>c</sup> C = laboratory water control <sup>d</sup> LC<sub>50</sub> = Median Lethal Concentration <sup>e</sup> EC<sub>50</sub> = Median effects concentration NT = not tested

f %A = Percent Adversely Affected in 100% effluent g TUa = Acute Toxicity Units h NF = Near Field Sample In the Portage River i %M = Percent Mortality in 100% effluent

ND = not determined

Table 20. Summary of the aquatic life use attainment status for the warmwater habitat use designation in Portage River based on data collected by the Ohio EPA from 1994 and 1985.

| RIVER MILE       | •                  | Mod.      |          |                  | Use A     | Attain-        |                           |
|------------------|--------------------|-----------|----------|------------------|-----------|----------------|---------------------------|
| Fish/Macro.      | IBI                | Iwb       | ICI      | OHEI             |           | Status         | Comments                  |
|                  |                    |           |          | ,.               |           |                |                           |
| Portage River (. | 1994)              |           |          |                  |           |                |                           |
|                  |                    | Turon/Eri | e Lake   | Plain - 1        | WWH Us    | e Designation  | (Existing)                |
| 17.6/17.7        | 37                 | 8.7       |          | 48               | 59.5      | FULL           | Regional Reference Site   |
| 17.4/            | 31 <sup>ns</sup>   | 7.1       | ns       |                  | 58.5      | (FULL)         | Upstream ambient          |
| 16.8/17.0        | 39                 | 9.0       |          | 52               | 67.0      | FULL           | Ust. Brush Wellman        |
| •                | - <sup>1</sup> · . | Estuarin  | e Effec  | t - Interi       | m Lake E  | Erie Estuary B | iocriteria                |
| 16.5/16.5S       | 31                 | 7.9       |          | 34               |           | N/A            | BW mixing zone (Hyde Run) |
| /16.5N           |                    | *         |          | 30               |           | (FULL)         | Opposite BW (Hyde Run)    |
| 16.2/            | 33                 | 8.3       |          |                  | 68.0      | (FULL)         | Dst. Brush Wellman        |
| 13.3/13.8        | 37                 | 9.8       |          | 16*              | 64.5      | PARTIAL        | Ust. Oak Harbor WWTP      |
| 12.3/12.3        | 37                 | 9.8       |          | <u>6</u> *       | 51.5      | NON            | Dst. Oak Harbor WWTP      |
| Portage River    | r (1985)           |           | •        | 4                |           |                |                           |
| i ortuge ittre   |                    | Huron/Er  | ie Lake  | Plain -          | WWH IIS   | se Designation | (Fxisting)                |
| 17.6/18.1        | 41                 | 9.4       |          | 44               |           | FULL           | Regional Reference Site   |
| 17.3/17.2        | . 36               | 9.1       |          | 30 <sup>ns</sup> |           | FULL           | Regional Reference Site   |
| /17.1            | -                  |           |          | 38               | -         | (FULL)         | Regional Reference Site   |
| 16.8/17.0        | 28*                | 7.4       |          | 44               |           | PARTIAL        | Ust. Brush Wellman        |
| 16.7/16.7S       | 34                 | 8.0       | ns       | 32               | 57.0      | FULL           | Dst. BW (006, 009)        |
| *                |                    | Estuarin  | ie Effec | t - Interi       | im Lake I | Erie Estuary B |                           |
| 16.4/16.5N       | 28 <sup>ns</sup>   | 7.5       | -        | 32               |           | FULL           | Dst. BW (Hyde Run)        |
| 16.3S/           | 33                 | 8.0       |          |                  | 59.0      | (FULL)         | Dst. Brush Wellman        |
| 15.0/15.7        | 27*                | 7.8       |          | 24               | 54.0      | PARTÍAL        | Estuarine effect          |
| 13.0/            | 31 <sup>ns</sup>   | 8.8       |          | '                | 51.0      | (FULL)         | Ust. Oak Harbor WWTP      |

<sup>\*</sup> Significant departure from ecoregion or interim biocriterion; poor and very poor results are underlined.

<sup>&</sup>lt;sup>ns</sup> Nonsignificant departure from ecoregion or interim biocriterion (≤4 IBI or ICI units; ≤0.5 Iwb units).

<sup>&</sup>lt;sup>a</sup> All Qualitative Habitat Evaluation Index (QHEI) values are based on the most recent version (Rankin 1989).

b Use attainment status based on one organism group is parenthetically expressed.

<sup>&</sup>lt;sup>c</sup> Biocriteria do not apply inside mixing zones. S - south bank; N - north bank

Table 20. continued

Ecoregion Biocriteria: Huron/Erie Lake Plain (HELP)

| INDEX - Site Type                                     | <u>WWH</u>   | <u>EWH</u> | <u>MWH</u> d |
|-------------------------------------------------------|--------------|------------|--------------|
| IBI - Wading Sites (ust. RM 17.0)                     | 32           | 50         | 22           |
| IBI - Boat Sites (RM 17.0-16.8)                       | 34           | 50         | 20           |
| IBI - Interim L. Erie Estuary (RM 16.5 and dst.)      | 32           | NA         | NA           |
| MIwb - Wading Sites                                   | 7.3          | 9.4        | 5.6          |
| MIwb - Boat Sites                                     | 8.6          | 9.6        | 5.7          |
| MIwb - Interim L. Erie Estuary                        | 7.5          | NA         | NA           |
| ICI                                                   | 34           | 46         | 22           |
| ICI - Interim L. Erie Estuary                         | 22           | NA         | NA           |
| d - Modified Warmwater Habitat for channelized modifi | cation type. |            |              |

Table 21. Ohio EPA, Division of Emergency and Remedial Response, records of pollution spills suspected to have originated from Brush Wellman.

| DATE     | WATERBODY<br>AFFECTED | SUSPECTED<br>POLLUTANT | AMOUNT<br>SPILLED | AMOUNT<br>RECOVERED |
|----------|-----------------------|------------------------|-------------------|---------------------|
| 01/18/96 | Hyde Run              | wastewater             | NR                | NR                  |
| 01/25/96 | site grounds          | process water          | NR                | NR                  |
| 02/01/96 | plant site            | hydrochloric acid      | 8.0 gallons       | NR                  |
| 01/15/97 | plant site            | wastewater             | 1000 gallons      | NR                  |
| 07/28/98 | site grounds          | cooling water          | 100,000 gal.      | NR                  |
| 10/05/98 | Hyde Run              | wastewater             | 100 gallons       | NR                  |
| 12/31/99 | site grounds          | sewage                 | NR                | NR                  |
| 05/22/00 | site grounds          | hydrofluoric acid      | 25 gallons        | NR                  |

Table 22. Effluent Data for Brush Wellman

|               | Parameter              | Units        | # of<br>Samples | #><br>MDL | Average<br>PEQ  | Maximum<br>PEQ |
|---------------|------------------------|--------------|-----------------|-----------|-----------------|----------------|
|               |                        |              |                 |           |                 |                |
| LEAP          | <b>S</b>               |              |                 |           |                 |                |
| DATA          |                        |              |                 |           |                 |                |
| 002           | Residue, Dis.          | mg/l         | 4               | 4         | 10610           | 14534          |
|               | PhosT P-Wet.           | mg/l         | 4               | 3         | 0.0949          | 0.13           |
|               | Cyanide, Tot.          | mg/l         | 2               | 0         | <b></b> · · · . |                |
|               | Fluoride, Tot.         | mg/l         | 4               | 4         | 30.368          | 41.6           |
|               | Beryllium <sup>A</sup> | ug/l         | 4               | 4         | 341.64          | 468            |
|               | Cadmium                | ug/l         | 4               | 2         | 18.98           | 26             |
|               | Chromium, Hex.         | ug/l         | 4               | 4         | 11.388          | 15.6           |
|               | Chromium, Tot.         | ug/l         | 4               | 4         | 37.96           | 52             |
|               | Copper                 | ug/l         | 4               | 4         | 379.6           | 520            |
|               | Lead                   | ug/l         | 1 .             | 0 .       | AGEN            | <b></b>        |
|               | Nickel                 | ug/l         | 4               | 4         | 246.74          | 338            |
|               | Silver                 | ug/l         | 4               | 4         | 26.572          | 36.4           |
|               | Cyanide, Free          | mg/l         | 4               | 0         |                 |                |
| 04            | Fluoride, Tot.         | mg/l         | 8               | 8         | 31.901          | 43.7           |
|               | Beryllium <sup>A</sup> | ug/l         | 8               | 8         | 3162.4          | 4332           |
|               | Copper                 | ug/l         | 8               | 8         | 1109.6          | 1520           |
|               | PCBs A                 | ug/l         | 6               | 1         | 6.5919          | 9.03           |
| 005           | Fluoride, Tot.         | mg/l         | 41              | 40        | 2.3994          | 3.7069         |
|               | Beryllium <sup>A</sup> | ug/l         | 41              | 41        | 145.28          | 232.71         |
|               | Copper                 | ug/l         | 39              | 39        | 923             | 1265           |
|               | PCBs A                 | ug/l         | 31              | 0         | Santa Control   |                |
| 006           | Fluoride, Tot.         | mg/l         | 58              | 56        | 1.4617          | 2.2161         |
|               | Beryllium <sup>A</sup> | ug/l         | 56              | 44        | 29              | 40             |
|               | Copper                 | ug/l         | 54              | 53        | 165.26          | 257.33         |
| 007           | Fluoride, Tot.         | mg/l         | 54              | 54        | 3.3838          | 5.002          |
| - <del></del> | Beryllium <sup>A</sup> | ug/l         | 54              | 54        | 97.158          | 154.49         |
|               | Copper                 | ug/l         | 52              | 51        | 650.88          | 1043.2         |
|               | PCBs A                 | ug/l         | 46              | 1 -       | 51.1            | 70             |
| 008           | Fluoride, Tot.         | mg/l         | 8               | 8         | 15.257          | 20.9           |
|               | Beryllium <sup>A</sup> | ug/l         | 8               | 8         | 7212.4          | 9880           |
|               | Copper                 | ug/l         | 8               | 8         | 1276            | 1748           |
|               | PCBs A                 | ug/l         | 2               | 0         |                 |                |
|               | . 0.00                 | <b>₩</b> ₩ . | ~               | ,         |                 |                |

Table 22. Effluent Data for Brush Wellman (Continued)

|     | Parameter                   | Units        | # of<br>Samples | #><br>MDL | Average<br>PEQ   | Maximum<br>PEQ  |
|-----|-----------------------------|--------------|-----------------|-----------|------------------|-----------------|
| 009 | Fluoride, Tot.              | mg/l         | 29              | 27        | 0.9506           | 1.5041          |
| צטו | Beryllium <sup>A</sup>      | ug/l         | 29              | 27        | 35               | 48              |
|     | Copper                      | ug/l<br>ug/l | 28              | 26        | 52.962           | 85.808          |
| 11  | Residue, Dis.               | mg/l         | 162             | 162       | 8925             | 12227           |
| 11  | Ammonia (sum)               | mg/l         | 53              | 53        | 4.0717           | 5.2877          |
|     | Ammonia (win)               | mg/l         | 37              | 37        | 6.7419           | 9.1408          |
|     | PhosT P-Wet.                | mg/l         | 77              | 77        | 0.4014           | 0.6214          |
|     | Cyanide, Tot.               | mg/l         | 14              | 1         | 0.0219           | 0.0214          |
|     | Cyanide, Amenable           | mg/l         | 4               | 0         | 0.0219           | 0.05            |
|     | Fluoride, Tot.              | mg/l         | 162             | 162       | 11.996           | <br>15.369      |
|     | Barium                      | ug/l         | 21              | 21        | 30.1             | 35.313          |
|     | Beryllium <sup>A</sup>      | ug/l<br>ug/l | 162             | 162       | 48.172           | 72.124          |
|     | Cadmium                     | ug/l<br>ug/l | 148             | 119       | 9.9              | 14              |
|     | Chromium, Hex.              | ug/l<br>ug/l | 153             | 149       | 5.1796           | 7.4359          |
|     | Chromium, Tot.              | ug/l<br>ug/l | 154             | 154       | 24.376           | 33.028          |
|     | •                           | ug/l<br>ug/l | 154             | 154       | 169.86           | 237.57          |
|     | Copper<br>Lead              | ug/l<br>ug/l | 21              | 17        | 20               | 28              |
|     | Nickel                      | ug/l<br>ug/l | 154             | 17        | 105              | 144             |
|     | Silver                      | -            | 83              | 83        | 34.557           | 42.407          |
|     |                             | ug/l         |                 |           | 34.337           | 42.407          |
| 1 4 | Chlorine, Tot. Res.         | mg/l         | 52<br>23        | 0         | 10005            | <br>13542       |
| 14  | Residue, Dis. Ammonia (sum) | mg/l<br>mg/l | 6               | 23<br>6   | 70.518           | 96.6            |
|     | Ammonia (win)               | mg/l         | 4               | 4         | 158.48           | 217.1           |
|     | PhosT P-Wet.                | - ',         | 22              | • •       | 1.256            | 1.6039          |
|     | Fluoride, Tot.              | mg/l         | 22              | 20<br>23  | 23.899           | 32.36           |
|     | Beryllium <sup>A</sup>      | mg/l         | 23              | 2.00      | 288.47           | 32.30<br>466.24 |
|     | Cadmium                     | ug/l         | 23              | 21<br>16  | 288.47<br>9.5    | 13              |
|     |                             | ug/l         |                 |           |                  | 5 4             |
| :   | Chromium, Hex.              | ug/l         | 23              | 23        | 13.701<br>19.839 | 23.401          |
|     | Chromium, Tot.              | ug/l         | 23              | 21        |                  | 29.901          |
|     | Copper                      | ug/l         | 23              | 23        | 237.57           | 409.77          |
|     | Nickel                      | ug/l         | 23              | 23        | 90.979           | 120.12          |
|     | Silver                      | ug/l         | 17              | 17        | 17.731           | 21.252          |
|     | Cyanide, Free               | mg/l         | 23              | 4         | 0.038            | 0.052           |
|     | Cyanide, Tot.               | mg/l         | 23              | 1         | 0.019            | 0.026           |

Table 22. Effluent Data for Brush Wellman (Continued)

|                                   | Parameter              | Units | # of<br>Samples | #><br>MDL | Average<br>PEQ | Maximum<br>PEQ |
|-----------------------------------|------------------------|-------|-----------------|-----------|----------------|----------------|
| 041                               | Residue, Dis.          | mg/l  | 21              | 21        | 12452          | 15080          |
|                                   | Ammonia (sum)          | mg/l  | 13              | 13        | 14.187         | 26.469         |
|                                   | Beryllium <sup>A</sup> | ug/l  | 23              | 22        | 67.941         | 115.51         |
|                                   | Cadmium                | ug/l  | 20              | 14        | 10             | 14             |
|                                   | Chromium, Hex.         | ug/l  | 20              | 20        | 6              | 8              |
|                                   | Chromium, Tot.         | ug/l  | 20              | 20        | 23.503         | 34.468         |
|                                   | Copper                 | ug/l  | 18              | 18        | 155.93         | 204.55         |
|                                   | Nickel                 | ug/l  | 11              | 11        | 177.28         | 260.55         |
|                                   | Silver                 | ug/l  | 22              | 22        | 45             | 62             |
|                                   | Cyanide, Free          | mg/l  | 2               | 0         |                |                |
| 042                               | Residue, Dis.          | mg/l  | 23              | 23        | 12301          | 14837          |
| *-                                | Ammonia (sum)          | mg/l  | 10              | 10        | 4.9492         | 6.8581         |
|                                   | Ammonia (win)          | mg/l  | 3               | 3         | 11.388         | 15.6           |
|                                   | Beryllium <sup>A</sup> | ug/l  | 23              | 23        | 54.1           | 85.767         |
|                                   | Cadmium                | ug/l  | 19              | 15        | 10             | 14             |
|                                   | Chromium, Hex.         | ug/l  | 19              | 19        | 5.7194         | 8.7889         |
|                                   | Chromium, Tot.         | ug/l  | 19              | 19        | 25.466         | 36.218         |
|                                   | Copper                 | ug/l  | 19              | 19        | 160.32         | 213.18         |
|                                   | Nickel                 | ug/l  | 13              | 13        | 155.37         | 217.68         |
|                                   | Silver                 | ug/l  | 14              | 14        | 44.949         | 60.479         |
|                                   | Cyanide, Free          | mg/l  | 1               | 0         | <del></del>    | <u></u>        |
| 043                               | Residue, Dis.          | mg/l  | 16              | 16        | 12597          | 17110          |
|                                   | Ammonia (sum)          | mg/l  | 6               | 6         | 56.721         | 77.7           |
|                                   | Ammonia (win)          | mg/l  | 5               | 5         | 10.746         | 14.72          |
|                                   | Beryllium <sup>A</sup> | ug/l  | 16              | 15        | 175.87         | 321.86         |
| ALLES AND SERVICE AND SERVICE AND | Cadmium                | ug/l  | 15              | 14        | 11             | 15             |
|                                   | Chromium, Hex.         | ug/l  | 16              | 16        | 6.6818         | 10.551         |
|                                   | Chromium, Tot.         | ug/l  | 15              | 14        | 22.419         | 33.844         |
| ·.<br>·.                          | Copper                 | ug/l  | 14              | 14        | 192.52         | 276.87         |
|                                   | Nickel                 | ug/l  | 16              | 16        | 142            | 195            |
|                                   | Silver                 | ug/l  | 16              | 16        | 42             | 57             |
|                                   | Cyanide, Free          | mg/l  | 2               | 0         | <br>           |                |

Table 22. Effluent Data for Brush Wellman (Continued)

|                  | Parameter              | Units | # of<br>Samples | #><br>MDL | Average<br>PEQ | Maximum<br>PEQ |
|------------------|------------------------|-------|-----------------|-----------|----------------|----------------|
| 044              | Residue, Dis.          | mg/l  | 14              | 14        | 12318          | 15747          |
| VTT              | Ammonia (sum)          | mg/l  | 5               | 5         | 16.622         | 22.77          |
|                  | Ammonia (win)          | mg/l  | 2               | 2         | 12.76          | 17.48          |
|                  | Beryllium <sup>A</sup> | ug/l  | 15              | 15        | 48.986         | 86.839         |
|                  | Cadmium                | ug/l  | 15              | 13        | 11             | 15             |
| -                | Chromium, Hex.         | ug/l  | 14              | 14        | 8.5879         | 15.367         |
|                  | Chromium, Tot.         | ug/l  | 15              | 15        | 26.576         | 40.664         |
|                  | Copper                 | ug/l  | 12              | 12        | 140.62         | 181.69         |
|                  | Nickel                 | ug/l  | 15              | 15        | 153            | 210            |
| •                | Silver                 | ug/l  | 15              | 15        | 32             | 44             |
|                  | Cyanide, Free          | mg/l  | 3               | 2         | 0.0876         | 0.12           |
| 045              | Residue, Dis.          | mg/l  | 22              | 22        | 12084          | 15888          |
| <b>U</b> 45      | Ammonia (sum)          | mg/l  | 4               | 4         | 47.45          | 65             |
|                  | Ammonia (win)          | mg/l  | 6               | 6         | 9.0447         | 12.39          |
|                  | Beryllium <sup>A</sup> | ug/l  | 24              | 23        | 96.807         | 166.81         |
|                  | Cadmium                | ug/l  | 22              | 17        | 10             | 14             |
|                  | Chromium, Hex.         | ug/l  | 22              | 22        | 5.8721         | 9.169          |
|                  | Chromium, Tot.         | ug/l  | 22              | 21        | 21.527         | 30.322         |
| and the same     | Copper                 | ug/l  | 22              | 22        | 276.45         | 467.3          |
|                  | Nickel                 | ug/l  | 16              | 16        | 146.28         | 202.6          |
|                  | Silver                 | ug/l  | 15              | 15        | 35.451         | 49.926         |
|                  | Cyanide, Free          | mg/l  | 5               | 0         |                |                |
| 046              | Residue, Dis.          | mg/l  | 50              | 50        | 10881          | 13495          |
| U <del>1</del> U | Ammonia (sum)          | mg/l  | 11              | 11        | 57             | 78             |
|                  | Ammonia (win)          | mg/l  | 11              | 11        | 13.895         | 24.441         |
|                  | Beryllium <sup>A</sup> | ug/l  | 69              | 58        | 93.979         | 142.43         |
|                  | Cadmium                | ug/l  | 54              | 49        | 7.3            | 10             |
|                  | Chromium, Hex.         | ug/l  | 53              | 53        | 6.832          | 10.364         |
|                  | Chromium, Tot.         | ug/l  | 53              | 53        | 21.902         | 30.2           |
|                  | Copper Copper          | ug/l  | 54              | 54        | 161.69         | 233.87         |
|                  | Nickel                 | ug/l  | 53              | 53        | 117            | 160            |
|                  | Silver                 | ug/l  | 54              | 54        | 25             | 34             |
|                  | Cyanide, Free          | mg/l  | 13              | 2         | 0.4672         | 0.64           |

Table 22. Effluent Data for Brush Wellman (Continued)

|       |                     |       | # of    | #>  | Average | Maximum |
|-------|---------------------|-------|---------|-----|---------|---------|
|       | Parameter           | Units | Samples | MDL | PEQ     | PEQ     |
| OEPA  |                     |       |         |     |         |         |
| or 2C |                     |       |         |     |         |         |
| DATA  |                     |       |         |     |         |         |
| 002   | Ammonia             | mg/l  | 4       | NG  | 78      | 107     |
|       | Nitrate & Nitrite   | mg/l  | 1       | 1   | 23      | 31      |
|       | Chlorine, Tot. Res. | mg/l  | 1       | 1   | 0.09    | 0.12    |
|       | Aluminum            | ug/l  | 1       | 1   | 498     | 682     |
|       | Antimony            | ug/l  | 1       | 1   | 43      | 60      |
|       | Arsenic             | ug/l  | 1       | 1   | 158     | 217     |
|       | Boron               | ug/l  | 1       | 1   | 1086    | 1488    |
|       | Cobalt              | ug/l  | 1       | 1   | 54      | 74      |
|       | Iron                | ug/l  | 1       | 1   | 258     | 353     |
|       | Manganese           | ug/l  | 1       | 1   | 154     | 211     |
|       | Molybdenum          | ug/l  | 1       | 1   | 1629    | 2232    |
|       | Selenium            | ug/l  | 1       | 1   | 149     | 205     |
|       | Zinc                | ug/l  | 1       | 1   | 91      | 124     |
| 04    | Ammonia             | mg/l  | 1       | 1   | 3.6     | 5.0     |
|       | Aluminum            | ug/l  | 1       | 1   | 543     | 744     |
|       | Barium              | ug/l  | 1       | 1   | 118     | 161     |
|       | Iron                | ug/l  | 1       | 1   | 1313    | 1798    |
|       | Lead                | ug/l  | 1       | 1   | 15      | 21      |
|       | Zinc                | ug/l  | 1       | 1   | 1448    | 1984    |
| 05    | Ammonia             | mg/l  | 1       | 1   | 2.3     | 3.1     |
|       | Nitrate & Nitrite   | mg/l  | 1       | 1   | 10      | 14      |
|       | Aluminum            | ug/l  | 1       | 1   | 1494    | 2046    |
|       | Iron                | ug/l  | 1       | 1   | 3802    | 5208    |
|       | Lead                | ug/l  | 1       | 1.  | 54      | 74      |
|       | Zinc                | ug/l  | 1       | 1 _ | 996     | 1364    |
| 06    | Ammonia             | mg/l  | 1       | 1   | 0.45    | 0.62    |
|       | Aluminum            | ug/l  | 1       | 1   | 8147    | 11160   |
|       | Barium              | ug/l  | 1       | 1   | 339     | 465     |
|       | Iron                | ug/l  | 1       | 1   | 12673   | 17360   |
|       | Lead                | ug/l  | 1       | 1   | 16      | 22      |
|       | Titanium            | ug/l  | . 1     | 1   | 498     | 682     |
|       | Zinc                | ug/l  | 1       | - 1 | 249     | 341     |

Table 22. Effluent Data for Brush Wellman (Continued)

|      | Parameter           | Units | # of<br>Samples | #><br>MDL | Average<br>PEQ | Maximum<br>PEQ |
|------|---------------------|-------|-----------------|-----------|----------------|----------------|
|      | r arameter          | Omts  | Samples         | MIDE      | FEQ            | FEQ            |
| 007  | Ammonia             | mg/l  | 1               | 1         | 1.4            | 1.9            |
|      | Nitrate & Nitrite   | mg/l  | 1               | 1         | 23             | 32             |
|      | Aluminum            | ug/l  | 1               | 1         | 950            | 1302           |
|      | Barium              | ug/l  | 1 .             | 1         | 407            | 558            |
|      | Boron               | ug/l  | 1               | 1.        | 249            | 341            |
|      | Iron                | ug/l  | 1               | 1         | 1494           | 2046           |
|      | Zinc                | ug/l  | 1               | 1         | 679            | 930            |
| 800  | Ammonia             | mg/l  | 1               | 1         | 3.6            | 5.0            |
|      | Aluminum            | ug/l  | 1               | 1         | 5431           | 7440           |
| - '  | Barium              | ug/l  | 1               | 1         | 403            | 552            |
|      | Cadmium             | ug/l  | 1               | . 1       | 19             | 27             |
| A    | Cobalt              | ug/l  | 1               | 1         | 91             | 124            |
|      | Iron                | ug/l  | 1               | 1         | 7242           | 9920           |
|      | Lead                | ug/l  | 1               | 1         | 33             | 45             |
|      | Titanium            | ug/l  | 1               | 1         | 679            | 930            |
|      | Zinc                | ug/l  | 1               | 1         | 679            | 930            |
| 009  | Nitrate & Nitrite   | mg/l  | 1               | . 1       | 7.7            | 11.            |
| , 0, | Phosphorus          | mg/l  | 1               | 1         | 0.5            | 0.7            |
|      | Chlorine, Tot. Res. | mg/l  | 1               | 1         | 0.09           | 0.12           |
|      | Aluminum            | ug/l  | 1               | 1         | 2489           | 3410           |
|      | Barium              | ug/l  | 1               | 1         | 389            | 533            |
|      | Iron                | ug/l  | 1               | 1         | 3078           | 4216           |
|      | Manganese           | ug/l  | 1               | 1         | 213            | 291            |
|      | Zinc                | ug/l  | 1               | 1         | 72             | 99             |
| )11  | Nitrate & Nitrite   | mg/l  | 2               | 2         | 1221           | 1672           |
| ,,,, | Nitrite-N           | mg/l  | 1               | 1         | 44             | 60             |
|      | Aluminum            | ug/l  | 2               | . 2       | 1498           | 2052           |
|      | Arsenic             | ug/l  | 2               | 1         | 50             | 68             |
| •    | Boron               | ug/l  | 1               | 1         | 498            | 682            |
|      | Iron                | ug/l  | 2               | -1        | 322            | 441            |
|      | Manganese           | ug/l  | 2               | 2         | 61             | 84             |
|      | Mercury             | ug/l  | 2               |           | 0.58           | 0.79           |
|      | ivicioui y          | ng/I  | 2               | 1         | 0.50           | 0.79           |

Table 22. Effluent Data for Brush Wellman (Continued)

|     | Parameter            | Units | # of<br>Samples |   | Average<br>PEQ | Maximum<br>PEQ |
|-----|----------------------|-------|-----------------|---|----------------|----------------|
| 011 | Malakia              |       |                 | 1 | (70)           | 020            |
| 011 | Molybdenum           | ug/l  | 1               |   | 679            | 930            |
|     | Potassium            | ug/l  | 1               | 1 | 67890          | 93000          |
|     | Selenium             | ug/l  | 2               | 1 | 136            | 186            |
| 4 2 | Strontium            | ug/l  | 1               | 1 | 33311          | 45632          |
|     | Zinc                 | ug/l  | 2               | 2 | 139            | 190            |
|     | Bromochloromethane   | ug/l  | 1               | 1 | 12             | 16             |
|     | Bromoform            | ug/l  | 2               | 1 | 14             | 19             |
|     | 1,2-Dichloroethane A | ug/l  | 2               | 1 | 3.9            | 5.4            |
|     | Tetrachloroethylene  | ug/l  | · · 2 , .; .    | 1 | 5.4            | 7.4            |

A Carcinogen
NG The #>MDL was not given

Table 23. Water Quality Criteria in the Study Area

|                     | 1     |                   | Outside M     | lixing Zone       | Criteria         |                   | Inside              |
|---------------------|-------|-------------------|---------------|-------------------|------------------|-------------------|---------------------|
|                     |       |                   | Avera         |                   | <u> </u>         | Maximum           | •                   |
|                     | · .   | Human             |               | Agri-             | Aquatic          | Aquatic           | Zone                |
|                     | Units | Health A          | Wildlife      | culture           | Life A           | Life A            | Maximum A           |
| Aluminum            | ug/l  | 4500 <sup>B</sup> |               |                   |                  | ***               | <del></del>         |
| Ammonia (sum)       | mg/l  | -                 |               | <del>-</del> . ". | 0.6              | · <del>-</del> ·  | <del></del> , , , , |
| Ammonia (win)       | mg/l  |                   | -             | · <del>-</del>    | 3.3              | _                 |                     |
| Antimony            | ug/l  | 780               |               |                   | 190 B            | 900 B             | 1800 B              |
| Arsenic             | ug/l  | 580               |               | 100               | 150              | 340               | 680                 |
| Barium              | ug/l  | 160000            |               | -                 | 220 B            | 2000 B            | 4000 B              |
| Beryllium           | ug/l  | 130°              |               | 100               | 48 <sup>B</sup>  | 410 <sup>B</sup>  | 820 B               |
| Boron               | ug/l  | 200000            |               |                   | 950 B            | 8500 <sup>B</sup> | 17000 <sup>в</sup>  |
| Bromoform           | ug/l  | 890°              |               | · ·               | 230 <sup>B</sup> | 1100 <sup>B</sup> | 2200 B              |
| Cadmium             | ug/l  | 730               |               | 50                | 5.1              | 13                | 26                  |
| Chlorine, Tot. Res. | ug/l  |                   | ورائي والمساو | · <b></b>         | 11               | 19                | 38                  |
| Chromium, Hex.      | ug/l  | 14000             |               |                   | 11               | 16                | 31                  |
| Chromium, Tot.      | ug/l  | 14000             | <b></b>       | 100               | 180              | 3800              | 7700                |
| Cobalt              | ug/l  |                   | <del>-</del>  |                   | 24 <sup>B</sup>  | 220 B             | 440 <sup>B</sup>    |
| Copper              | ug/l  | 64000             |               | 500               | 20               | 33                | 67                  |
| Cyanide, Free       | ug/l  | 48000             |               |                   | 5.2              | 22                | 44                  |
| Cyanide, Tot.       | ug/l  | 48000             |               |                   | :                |                   | <b></b>             |
| 1,2-Dichloroethane  | ug/l  | 230°              | -             |                   | 2000 B           | 9600 <sup>B</sup> | 19000 <sup>в</sup>  |
| Fluoride, Tot.      | ug/l  |                   | -             | 2000              | ',               |                   |                     |
| Iron                | ug/l  |                   | <b></b>       | 5000              |                  | · <u></u>         |                     |
| Lead                | ug/l  | 190               |               | 100               | 21               | 400               | 790                 |
| Manganese           | ug/l  | 61000             | 10+100 ·      |                   | - · ·            |                   | <del></del>         |
| Mercury             | ug/l  | 0.0031            | 0.0013        | 10                | 0.91             | 1.7               | 3.4                 |
| Molybdenum          | ug/l  | 10000             |               |                   | 110 <sup>B</sup> | 2400 B            | 4700 <sup>B</sup>   |
| Nickel              | ug/l  | 43000             |               | 200               | 110              | 1000              | 2000                |
| Nitrate & Nitrite   | mg/l  |                   |               | 100               |                  |                   |                     |
| PCBs                | ug/l  | .000026°          |               |                   |                  |                   | _                   |
| Residue, Dis.       | ug/l  |                   |               |                   | 1500000          | ~ <b></b>         |                     |
| Selenium            | ug/l  | 3100              |               | 50                | 5                |                   | <b></b> ' 1.        |
| Silver              | ug/l  | 11000             |               |                   | 1.3              | 7.8               | 16                  |
| Strontium           | ug/l  | 1400000           |               |                   | 770 <sup>в</sup> | 6900 B            | 14000 B             |
| Tetrachloroethylene | ug/l  | 1800              | ,             |                   | 53 <sup>B</sup>  | 430 B             | 850 B               |
| Zinc                | ug/l  | 35000             |               | 25000             | 260              | 260               | 520                 |
|                     |       |                   |               |                   |                  |                   |                     |

<sup>&</sup>lt;sup>A</sup> Human Health and Aquatic Life criteria are Tier I unless otherwise indicated.

<sup>&</sup>lt;sup>B</sup> Tier II criterion.

<sup>&</sup>lt;sup>C</sup> Carcinogen

| Table 24. Instream Conditions and Discharger F |
|------------------------------------------------|
|------------------------------------------------|

| Parameter           | Units                                  | id Discharger                            | Value    | Basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------|----------------------------------------|------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1Q10                | cfs                                    | annual                                   | 3.47     | USGS gage #04195500, 1951-97 data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7Q10                | cfs                                    | annual                                   | 4.39     | USGS gage #04195500, 1951-97 data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 90Q10               | cfs                                    | annual                                   | 8.79     | USGS gage #04195500, 1951-97 data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 30Q10               | cfs                                    | summer                                   | 6.36     | USGS gage #04195500, 1951-97 data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                        | winter                                   | 15.0     | USGS gage #04195500, 1951-97 data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Harmonic Mean Flo   | ow cfs                                 | annual                                   | 32.8     | USGS gage #04195500, 1951-97 data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                        |                                          | 02.0     | 0505 gago "01125500, 1251 57 data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mixing Assumption   | n %                                    | average                                  | 25       | OAC 3745-2-05 A) 4) d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     |                                        |                                          |          | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Instream Temperati  | ure °C                                 | summer                                   | 23.30    | USGS gage 04195600; 1334 values, 1968-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| •                   |                                        | winter                                   | 1.10     | USGS gage 04195600; 684 values, 1968-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Instream pH         | S.U.                                   | summer                                   | 8.3      | USGS gage 04195600; 1220 values, 1968-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     |                                        | winter                                   | 8.0      | USGS gage 04195600; 442 values, 1968-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Instream Hardness   | mg/l                                   | annual                                   | 251      | STORET; 36 values, 0 <mdl, 1985-94<="" td=""></mdl,>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     |                                        |                                          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Background Water    | Quality (ug                            | /1)                                      |          | and the second of the second o |
| Aluminum            |                                        |                                          | 620      | STORET; 80 values, 20 <mdl, 1980-9="" 1994<="" 3="" td=""></mdl,>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ammonia (sum)       | mg/l                                   |                                          | 0.025    | STORET; 84 values, 56 <mdl, 1980-9="" 1994<="" 6="" td=""></mdl,>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     | mg/l                                   |                                          | 0.14     | STORET; 38 values, 5 <mdl, 12="" 1980-2="" 1994<="" td=""></mdl,>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Arsenic             |                                        |                                          | 2        | STORET; 81 values, 57 <mdl, 1980-9="" 1994<="" 4="" td=""></mdl,>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Barium              |                                        | en e | 0        | No representative data available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Beryllium           |                                        |                                          | 0.46     | STORET; 6 values, 4 <mdl, 1994-9="" 1994<="" 7="" td=""></mdl,>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Boron               | •                                      |                                          | 0        | No representative data available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cadmium             |                                        |                                          | 0.1      | STORET; 133 values, 118 <mdl, 1980-9="" 1994<="" 3="" td=""></mdl,>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Chlorine, Tot. Res. |                                        | * 1 × 1                                  | 0        | No representative data available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Chromium, Hex.      |                                        |                                          | 0        | No representative data available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Chromium, Tot.      |                                        | •                                        | 15       | STORET; 135 values, 130 <mdl, 1980-9="" 1994<="" 3="" td=""></mdl,>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cobalt              |                                        |                                          | 0        | No representative data available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Copper              |                                        |                                          | 5        | STORET; 138 values, 106 <mdl, 1980-9="" 1994<="" 3="" td=""></mdl,>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     | mg/l                                   |                                          | 0        | No representative data available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Fluoride            | ······································ | en e | 0        | No representative data available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Iron                |                                        |                                          | 820      | STORET; 138 values, 2 <mdl, 1980-9="" 1994<="" 3="" td=""></mdl,>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Lead                |                                        |                                          | 1        | STORET; 193 values, 128 <mdl,3 1980-9="" 1994<="" td=""></mdl,3>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Mercury             |                                        |                                          | 0        | No representative data available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Molybdenum          |                                        |                                          | 0        | No representative data available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nickel              |                                        |                                          | 20       | STORET; 123 values, 120 <mdl, 1980-9="" 1994<="" 3="" td=""></mdl,>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     | mg/l                                   |                                          | 4.06     | STORET; 123 values, 120 NIDL, 3/1980-9/1994<br>STORET; 194 values, 15 MDL, 3/1980-9/1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PCBs                | mg/i                                   |                                          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | ma/l                                   |                                          | 0<br>504 | No representative data available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| •                   | mg/l                                   |                                          | 504      | STORET; 70 values, 0 <mdl, 1980-9="" 1994<="" 3="" td=""></mdl,>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Selenium            |                                        |                                          | 0        | STORET; 21 values, 21 <mdl, 1984-5="" 1994<="" 7="" td=""></mdl,>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Silver              |                                        |                                          | 0        | No representative data available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Strontium           |                                        |                                          | 0        | No representative data available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Zinc                |                                        |                                          | 15       | STORET, 139 values, 70 <mdl, 1980-9="" 1994<="" 3="" td=""></mdl,>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

-----

Table 25. Summary of Allowable Effluent Loads<sup>A</sup> to Maintain Applicable Water Quality Criteria at Critical Low Flows

|                               |              | verage             |             |         | Maximum  |
|-------------------------------|--------------|--------------------|-------------|---------|----------|
|                               | Human        | Wild-              | Agri        | Aquatic | Aquatic  |
| Parameter (kg/d) <sup>A</sup> | Health       | life               | Supply      | Life    | Life     |
|                               |              |                    |             |         |          |
| Aluminum                      | 78           | . <b></b> .        | Gir GIP     |         |          |
| Ammonia (sum)                 |              | <b></b>            | -           | 2.2     |          |
| Ammonia (win)                 |              |                    |             | 29      |          |
| Arsenic                       | 12           |                    | 2.0         | 0.40    | 0.72     |
| Barium                        | 3206         | <b>-</b> , , , , , | -           | 0.59    | 4.2      |
| Beryllium, Tot.               | 2.6          |                    | 2.0         | 0.13    | 0.87     |
| Boron                         | 4007         |                    |             | 2.5     | 18       |
| Cadmium, Tot.                 | 15           |                    | 1.0         | 0.013   | 0.027    |
| Chlorine, Tot. Res.           | <b></b>      | -                  |             | 0.029   | 0.040    |
| Chromium, Hex.                | 280          |                    | . ==        | 0.029   | 0.034    |
| Chromium, Tot.                | × <b>280</b> |                    | 1.7         | 0.44    | 8.0      |
| Cobalt                        |              | -                  | <del></del> | 0.064   | 0.47     |
| Copper, Tot.                  | 1282         |                    | 9.9         | 0.040   | 0.059    |
| Cyanide, Free                 | 962          |                    |             | 0.014   | 0.047    |
| Fluoride, Tot.                | ***          |                    | 40          |         | <b>-</b> |
| Iron                          |              | <del>-</del>       | 84          |         |          |
| Lead, Tot.                    | 3.8          | _                  | 2.0         | 0.054   | 0.84     |
| Mercury                       | 0.000062     | 0.0000070          | 0.20        | 0.0024  | 0.0036   |
| Molybdenum                    | 200          | _                  | <u></u> 1 ; | 0.29    | 5.1      |
| Nickel, Tot.                  | 861          |                    | 3.6         | 0.24    | 2.1      |
| Nitrate & Nitrite             |              |                    | 1922        | ···     |          |
| PCBs                          | 0.00000052   | · <b></b>          |             |         |          |
| Residue, Dis.                 | <u>.</u>     |                    |             | 2670    |          |
| Selenium                      | 62           | _ , ,              | 1.0         | 0.013   |          |
| Silver, Tot.                  | 220          | _ :                | <b></b> '.  | 0.0035  | 0.02     |
| Strontium                     | 28049        | <b></b> .          |             | 2.1     | 15       |
| Zinc                          | 701          |                    | 501         | 0.66    | 0.52     |

A Load is for entire Brush Wellman Facility.

Table 26. Summary of Allowable Effluent Loads<sup>A</sup> to Maintain Applicable Water Quality Criteria at Various Stream Flows

|                                    |              | Average                  |             |                 | Maximum    |
|------------------------------------|--------------|--------------------------|-------------|-----------------|------------|
|                                    | Human        | Wild-                    | Agri        | Aquatic         | Aquatic    |
| Parameter (kg/d) <sup>A</sup>      | Health       | life                     |             | Life            | Life_      |
| Flow in Portage River at Woodville | Gage: 15 cfs | 1                        |             |                 |            |
| Aluminum                           | 41           |                          | _           | · <u></u>       |            |
| Ammonia (sum)                      |              |                          |             | 6.1             |            |
| Ammonia (win)                      |              |                          | -           | 33              |            |
| Arsenic                            | 6.12         | _ '                      | 1.0         | 1.6             | 3.6        |
| Barium                             | 1693         | _                        |             | 2.3             | 21         |
| Beryllium, Tot.                    | 1.37         | <del></del>              | 1.1         | 0.50            | 4.3        |
| Boron                              | 2116         | _                        |             | 10              | 90         |
| Cadmium, Tot.                      | 7.72         | _                        | 0.53        | 0.053           | 0.14       |
| Chlorine, Tot. Res.                | <del></del>  | · — · · · · · ·          |             | 0.12            | 0.201      |
| Chromium, Hex.                     | 148          | <del>_</del>             | · · ·       | 0.12            | 0.17       |
| Chromium, Tot.                     | 148          | . <del>-</del>           | 0.90        | 1.7             | 40         |
| Cobalt                             | -            |                          |             | 0.25            | 2.3        |
| Copper, Tot.                       | 677          | <del>-</del> - ' ' ' ' ' | 5.24        | 0.16            | 0.30       |
| Cyanide, Free                      | 508          |                          |             | 0.055           | 0.23       |
| Fluoride, Tot.                     | _            | <u> </u>                 | 21          |                 |            |
| Iron                               |              |                          | 44          | - <del></del> - |            |
| Lead, Tot.                         | 2.0          | <del>-</del>             | 1.0         | 0.21            | 4.2        |
| Mercury                            | 0.000033     | 0.000014                 | 0.11        | 0.0096          | 0.018      |
| Molybdenum                         | 106          | <del>-</del> :           |             | 1.2             | 25         |
| Nickel, Tot.                       | 455          |                          | 1.9         | 0.95            | 10.37      |
| Nitrate & Nitrite                  | ·            |                          | 1015        |                 | . <b>-</b> |
| PCBs                               | 0.00000028   | <u></u> 4                | <b></b>     |                 |            |
| Residue, Dis.                      |              | _                        | . <u></u> ' | 10540           |            |
| Selenium                           | 33           | _ · · · · · ·            | 0.53        | 0.053           |            |
| Silver, Tot.                       | 116          |                          | ·<br>       | 0.014           | 0.083      |
| Strontium                          | 14815        | _                        |             | 8.15            | 73         |
| Zinc                               | 370          | <del>-</del> .           | 264         | 2.6             | 2.6        |

A Load is for entire Brush Wellman Facility.

Table 26. Summary of Allowable Effluent Loads<sup>A</sup> to Maintain Applicable Water Quality Criteria at Various Stream Flows (Continued)

|                                   |                | Average          |               |         | Maximum |  |
|-----------------------------------|----------------|------------------|---------------|---------|---------|--|
|                                   | Human          | Wild-            | Agri          | Aquatic | Aquatic |  |
| Parameter (kg/d) <sup>A</sup>     | Health         | life             | Supply        | Life    | Life    |  |
|                                   |                |                  |               |         |         |  |
| Flow in Portage River at Woodvill | e Gage: 30 cfs |                  |               |         |         |  |
|                                   | 00             |                  |               |         |         |  |
| Aluminum                          | 82             |                  |               | 10      |         |  |
| Ammonia (sum)                     | <del></del>    |                  |               | 12      |         |  |
| Ammonia (win)                     | -              | <b>6</b> 7140    |               | 67      | <b></b> |  |
| Arsenic                           | 12             | -                | 2.1           | 3.1     | 7.15    |  |
| Barium                            | 3386           |                  |               | 4.7     | 42      |  |
| Beryllium, Tot.                   | 2.7            |                  | 2.1           | 1.0     | 8.67    |  |
| Boron                             | 4233           | _                |               | 20      | 180     |  |
| Cadmium, Tot.                     | 15             |                  | 1.1           | 0.11    | 0.27    |  |
| Chlorine, Tot. Res                | · van          | · <u> </u>       |               | 0.23    | 0.40    |  |
| Chromium, Hex.                    | 296            |                  | . <del></del> | 0.23    | 0.34    |  |
| Chromium, Tot.                    | 296            | _                | 1 <b>.8</b>   | 3.5     | 80      |  |
| Cobalt                            |                |                  | · 💶 🛴         | 0.51    | 4.7     |  |
| Copper, Tot.                      | 1354           | · .              | 10            | 0.32    | 0.59    |  |
| Cyanide, Free                     | 1016           |                  |               | 0.11    | 0.47    |  |
| Fluoride, Tot.                    |                |                  | 42            |         |         |  |
| Iron                              |                | <del></del>      | 88            |         |         |  |
| Lead, Tot.                        | 4.0            | · —              | 2.1           | 0.42    | 8.4     |  |
| Mercury                           | 0.000066       | 0.000028         | 0.21          | 0.019   | 0.036   |  |
| Molybdenum                        | 212            | . <u>-</u>       |               | 2.3     | 51      |  |
| Nickel, Tot.                      | 910            | <u> </u>         | 3.8           | 1.9     | 21      |  |
| Nitrate & Nitrite                 |                | <u> </u>         | 2030          |         |         |  |
| PCBs                              | 0.0000055      | · _·             |               |         |         |  |
| Residue, Dis.                     |                |                  |               | 21079   | en frær |  |
| Selenium                          | 66             | ·                | 1.1           | 0.11    | _       |  |
|                                   | 233            |                  |               | 0.028   | 0.17    |  |
| Silver, Tot.                      | 29630          | <del>-</del>     | _ <del></del> | 16      | 146     |  |
| Strontium                         | 29030<br>740   |                  | 529           | 5.2     | 5.2     |  |
| Zinc                              | /40            | , <del>-</del> . | 349           | 3.4     | 3.4     |  |

A Load is for entire Brush Wellman Facility.

Table 26. Summary of *Allowable Effluent Loads*<sup>A</sup> to Maintain Applicable Water Quality Criteria at Various Stream Flows (Continued)

|                               |                    | Average           |                        |         | Maximum  |
|-------------------------------|--------------------|-------------------|------------------------|---------|----------|
|                               | Human              | Wild-             | Agri                   | Aquatic | Aquatic  |
| Parameter (kg/d) <sup>A</sup> | Health             | life              | Supply                 | Life    | Life     |
| Flow in Portage River at Wood | ville Gage: 45 cfs |                   |                        |         |          |
| Aluminum                      | 123                |                   | <b>-</b> , i.e. , i.e. |         |          |
| Ammonia (sum)                 |                    |                   | _                      | 18      |          |
| Ammonia (win)                 | <b></b>            |                   |                        | 100     |          |
| Arsenic                       | 18                 | · · ·             | 3.1                    | 4.7     | 11       |
| Barium                        | 5079               |                   |                        | 6.98    | 63       |
| Beryllium, Tot.               | 4.1                | · _               | 3.2                    | 1.5     | 13       |
| Boron                         | 6349               | · <del></del> . · |                        | 30      | 270      |
| Cadmium, Tot.                 | 23                 | _ **              | 1.6                    | 0.16    | 0.41     |
| Chlorine, Tot. Res.           |                    | <u></u>           | e Paris en en en en en | 0.350   | 0.600    |
| Chromium, Hex.                | 444                | · <u> </u>        | · ,                    | 0.35    | 0.51     |
| Chromium, Tot.                | 444                | <del></del>       | 2.7                    | 5.2     | 120      |
| Cobalt                        |                    | _                 |                        | 0.76    | 7.0      |
| Copper, Tot.                  | 2032               | _                 | 16                     | 0.48    | 0.89     |
| Cyanide, Free                 | 1524               |                   | <del></del>            | 0.17    | 0.70     |
| Fluoride, Tot.                |                    | . —               | 63                     |         | -        |
| Iron                          | . <del></del>      |                   | 133                    |         |          |
| Lead, Tot.                    | 6.0                | <del>-</del>      | 3.1                    | 0.63    | 13       |
| Mercury                       | 0.000098           | 0.000041          | 0.32                   | 0.029   | 0.054    |
| Molybdenum                    | 317                |                   |                        | 3.5     | 76       |
| Nickel, Tot.                  | 1364               | <del>-</del> ".   | 5.7                    | 2.9     | 31       |
| Nitrate & Nitrite             |                    | _                 | 3046                   |         | ·        |
| PCBs                          | 0.00000083         | <del>-</del> [7   | <del>-</del>           | ,       | <b>_</b> |
| Residue, Dis.                 | -                  |                   |                        | 31619   | <b>-</b> |
| Selenium                      | 98                 | _                 | 1.6                    | 0.16    | 1        |
| Silver, Tot.                  | 349                | · <b>-</b>        |                        | 0.041   | 0.25     |
| Strontium                     | 44444              | <b>–</b> . '      | <u></u>                | 24      | 219      |
| Zinc                          | 1111               | · <u> </u>        | 793                    | 7.8     | 7.8      |

A Load is for entire Brush Wellman Facility.

Table 26. Summary of *Allowable Effluent Loads*<sup>A</sup> to Maintain Applicable Water Quality Criteria at Various Stream Flows (Continued)

|                                   |                | Average        |             |               | Maximum                                 |
|-----------------------------------|----------------|----------------|-------------|---------------|-----------------------------------------|
| D                                 | Human          | Wild-          | Agri        | Aquatic       | Aquatic                                 |
| Parameter (kg/d) <sup>A</sup>     | Health         | life           | Supply      | Life          | Life                                    |
| Flow in Portage River at Woodvill | e Gage: 60 cfs |                |             |               |                                         |
| Aluminum                          | 164            | •••            |             |               | ·                                       |
| Ammonia (sum)                     | Paris          | ***            |             | 24            | <b></b> .                               |
| Ammonia (win)                     |                |                | -           | 134           |                                         |
| Arsenic                           | 24             |                | 4.1         | 6.3           | 14                                      |
| Barium                            | 6772           |                | ***         | 9.3           | 85                                      |
| Beryllium, Tot.                   | 5.5            |                | 4.2         | 2.0           | 17                                      |
| Boron                             | 8466           | _              |             | 40            | 360                                     |
| Cadmium, Tot.                     | 31             |                | 2.1         | 0.21          | 0.55                                    |
| Chlorine, Tot. Res.               | <b></b>        |                | was journal | 0.470         | 0.800                                   |
| Chromium, Hex.                    | 593            | <del>.</del> . |             | 0.47          | 0.68                                    |
| Chromium, Tot.                    | 592            |                | 3.6         | 7.0           | 160                                     |
| Cobalt                            | <b></b>        | -              | Bertin .    | 1.0           | 9.3                                     |
| Copper, Tot.                      | 2709           | · ·            | 21          | 0.63          | 1.2                                     |
| Cyanide, Free                     | 2032           |                |             | 0.22          | 0.93                                    |
| Fluoride, Tot.                    |                | _              | 85          |               | -                                       |
| Iron                              |                | _              | 177         |               | -                                       |
| Lead, Tot.                        | 8.0            | <u> </u>       | 4.2         | 0.85          | 17                                      |
| Mercury                           | 0.000131       | 0.000055       | 0.42        | 0.039         | 0.072                                   |
| Molybdenum                        | 423            |                |             | 4.7           | 102                                     |
| Nickel, Tot.                      | 1819           | · <u> </u>     | 7.6         | 3.8           | 41                                      |
| Nitrate & Nitrite                 |                | <b>–</b>       | 4061        |               | -                                       |
| PCBs                              | 0.00000110     | - ; - ; :      | ·           | <del></del> · |                                         |
| Residue, Dis.                     |                | <u> </u>       |             | 42159         | ••• · · · · · · · · · · · · · · · · · · |
| Selenium                          | 131            |                | 2.1         | 0.21          | -                                       |
| Silver, Tot.                      | 466            |                | ÷           | 0.055         | 0.33                                    |
| Strontium                         | 59259          | <del></del>    | <del></del> | 33            | 292                                     |
| Zinc                              | 1481           | · ·            | 1058        | 10            | 10                                      |

A Load is for entire Brush Wellman Facility.

Table 26. Summary of *Allowable Effluent Loads*<sup>A</sup> to Maintain Applicable Water Quality Criteria at Various Stream Flows (Continued)

| 1                                  |               | Average             |                                       |                      | Maximum |
|------------------------------------|---------------|---------------------|---------------------------------------|----------------------|---------|
|                                    | Human         | Wild-               | Agri                                  | Aquatic              | Aquatic |
| Parameter (kg/d) <sup>A</sup>      | Health        | life                | Supply                                | Life                 | Life    |
|                                    |               |                     |                                       |                      |         |
| Flow in Portage River at Woodville | Gage: 125 cfs |                     |                                       |                      |         |
|                                    |               |                     |                                       |                      |         |
| Aluminum                           | 342           |                     |                                       |                      | ••      |
| Ammonia (sum)                      |               | . ••                | <b>-</b>                              | 51                   |         |
| Ammonia (win)                      |               | <b></b>             | <del></del>                           | 279                  |         |
| Arsenic                            | 51            | ,—.,                | 8.64                                  | 13                   | 30      |
| Barium                             | 14109         |                     |                                       | 19                   | 176     |
| Beryllium, Tot.                    | 11            |                     | 8.78                                  | 4.19                 | 36      |
| Boron                              | 17637         | · <u></u>           | <del></del>                           | 84                   | 750     |
| Cadmium, Tot.                      | 64            |                     | 4.40                                  | 0.44                 | 1.14    |
| Chlorine, Tot. Res.                |               | _                   | • • • • • • • • • • • • • • • • • • • | 0.970                | 1.680   |
| Chromium, Hex.                     | 1235          | _                   |                                       | 0.97                 | 1.41    |
| Chromium, Tot.                     | 1233          | _                   | 7.50                                  | 15                   | 334     |
| Cobalt                             | -             |                     |                                       | 2.12                 | 19      |
| Copper, Tot.                       | 5643          |                     | 44                                    | 1.32                 | 2.47    |
| Cyanide, Free                      | 4233          |                     |                                       | 0.46                 | 1.9     |
| Fluoride, Tot.                     |               | · _                 | 176                                   |                      | MIN     |
| Iron                               |               | , · . <del></del> . | 369                                   |                      |         |
| Lead, Tot.                         | 17            | _                   | 8.73                                  | 1.76                 | 35      |
| Mercury                            | 0.00027       | 0.00011             | 0.88                                  | 0.080                | 0.15    |
| Molybdenum                         | 882           | -                   |                                       | 9.70                 | 212     |
| Nickel, Tot.                       | 3790          |                     | 16                                    | 7.94                 | 86      |
| Nitrate & Nitrite                  |               | . <u> </u>          | 8460                                  | 7.54<br>             |         |
| PCBs                               | 0.0000023     |                     | 0700                                  |                      |         |
| Residue, Dis.                      | 0.0000023     | <del>-</del> .**.   |                                       | 87830                |         |
| Selenium                           | 273           | . <del>-</del>      | <br>4.41                              | 0.44                 |         |
|                                    | 970           | <b>-</b> .          | 4.41                                  |                      | 0.60    |
| Silver, Tot.                       |               | . <del>-</del> '    | -                                     | 0.11                 | 0.69    |
| Strontium                          | 123456        | . <del>-</del>      |                                       | 68                   | 608     |
| Zinc                               | 3085          | <del>-</del>        | 2203                                  | 22                   | 22      |
|                                    |               | Section 1           | **                                    | ere are the contract |         |

A Load is for entire Brush Wellman Facility.

Table 26. Summary of Allowable Effluent Loads<sup>A</sup> to Maintain Applicable Water Quality Criteria at Various Stream Flows (Continued)

|                                      |               | verage           |                   |             | Maximum |
|--------------------------------------|---------------|------------------|-------------------|-------------|---------|
|                                      | Human         | Wild-            | Agri              | •           | Aquatic |
| Parameter (kg/d) <sup>A</sup>        | Health        | life             | Supply            | Life        | Life    |
|                                      |               | 4                |                   |             |         |
| Flow in Portage River at Woodville ( | Gage: 220 cfs |                  |                   |             |         |
| A1                                   | 602           |                  |                   |             |         |
| Aluminum                             | 602           | <del></del>      |                   | 89          |         |
| Ammonia (sum)                        |               |                  |                   |             |         |
| Ammonia (win)                        |               | · <del>-</del> : | 1.5               | 490         | <br>50  |
| Arsenic                              | 90            | <del>-</del> ,   | 15                | 23          | 52      |
| Barium                               | 24832         | _                |                   | 34          | 310     |
| Beryllium, Tot.                      | 20            |                  | 15                | 7.4         | 64      |
| Boron                                | 31040         | <del>-</del>     | ·                 | 147         | 1319    |
| Cadmium, Tot.                        | 113           | -                | 7.7               | 0.78        | 2.0     |
| Chlorine, Tot. Res.                  | <b></b>       | , <del></del>    | والمناف والمستوان | 1.7         | 3.0     |
| Chromium, Hex.                       | 2173          | <del>-</del>     | <b></b>           | 1.7         | 2.5     |
| Chromium, Tot.                       | 2171          | <b>-</b> ',      | 13                | 26          | 587     |
| Cobalt                               | -             | <b>-</b>         |                   | 3.7         | 34      |
| Copper, Tot.                         | 9932          | _                | 77                | 2.3         | 4.3     |
| Cyanide, Free                        | 7450          |                  | -                 | 0.81        | 3.4     |
| Fluoride, Tot.                       |               |                  | 310               | <del></del> |         |
| Iron                                 | -             | <u>—</u> , ·     | 649               |             |         |
| Lead, Tot.                           | 29            | <del></del> /    | 15                | 3.1         | 62      |
| Mercury                              | 0.00048       | 0.00020          | 1.6               | 0.14        | 0.26    |
| Molybdenum                           | 1552          |                  |                   | 17          | 372     |
| Nickel, Tot.                         | 6671          | _                | 28                | 14          | 152     |
| Nitrate & Nitrite                    |               | · .              | 14890             | -           | <b></b> |
| PCBs                                 | 0.00000404    | _ :.             |                   |             |         |
| Residue, Dis.                        |               |                  | ·                 | 154581      |         |
| Selenium                             | 481           | _                | 7.76              | 0.78        |         |
| Silver, Tot.                         | 1707          |                  |                   | 0.20        | 1.2     |
| Strontium                            | 217283        | - <u>-</u>       |                   | 120         | 1071    |
| Zinc                                 | 5430          |                  | 3878              | 38          | 38      |
| Zinc                                 | JAJU          |                  | - ·               |             |         |

A Load is for entire Brush Wellman Facility.

Group 1: Due to a lack of criteria, the following parameters could not be evaluated at this time. The facility may be required to generate toxicity data so that the parameters may be reevaluated.

> Outfall 002 Phosphorous Outfall 004 **Titanium** Outfall 005 Titanium Outfall 006 **Titanium** Outfall 008 Titanium Outfall 009 **Phosphorous**

Outfall 011 Bromochloromethane Nitrite-N **Phosphorus** Potassium

Outfall 014 **Phosphorus** 

Group 2: PEQ < 25% of WQS or all data below minimum detection limit; WLA not required. No limit

recommended, monitoring optional.

Outfall 002 Aluminum Antimony Cyanide, free Cvanide, Tot. Nitrate&Nitrite Residue, Dis. Lead Manganese Iron Outfall 004 Aluminum Outfall 005 PCB's Nitrate&Nitrite Outfall 007 Aluminum Nitrate&Nitrite Outfall 008 PCB's

Outfall 009 Manganese Nitrate&Nitrite

Outfall 011 Aluminum PCB's Barium Bromoform Chlorine, Tot. Res. Chromium, Tot.

Cyanide, amenable Iron

Cyanide, Tot. 1.2-Dichloroethane Manganese Tetrachloroethyene

Residue, Dis. Antimony Outfall 014 Chromium, Tot. Cyanide, Tot. Residue, Dis.

Chromium, Tot. Outfall 041 Cyanide, free

Residue, Dis. Outfall 042 Cyanide, free

Residue, Dis. Outfall 043 Cyanide, free Chromium, Tot. Residue, Dis.

Outfall 044 Residue, Dis. Residue, Dis. Outfall 045 Chromium, Tot. Cyanide, free

Residue, Dis.

Outfall 046 Chromium, Tot. Residue, Dis.

- Groups 3, 4 and 5 cannot be differentiated without an effluent flow value. Following are the group definitions and the parameters to be considered.
- Group 3: PEQ<sub>max</sub> < 50% of maximum PEL and PEQ<sub>avg</sub> < 50% of average PEL. No limit recommended, monitoring optional.
- Group 4:  $PEQ_{max} > 50\%$  but <100% of the maximum PEL or  $PEQ_{avg} > 50\%$  but < 100% of the average PEL. Monitoring is appropriate.
- Group 5: Maximum PEQ > 100% of the maximum PEL or average PEQ > 100% of the average PEL, or either the average or maximum PEQ is between 75 and 100% of the PEL and certain conditions that increase the risk to the environment are present. Limit recommended.

#### Allowable Effluent Loads to Protect Numeric Water Quality Criteria at Low Flows

|                     |          |   | Applica | ble 🕒 _ | Allowable Effluent Loads <sup>B</sup> |                                        |  |
|---------------------|----------|---|---------|---------|---------------------------------------|----------------------------------------|--|
| Parameter (kg/l)    | <u> </u> |   | Period  | ·       | Average                               | Maximum                                |  |
|                     |          |   |         |         |                                       |                                        |  |
| Aluminum            |          |   |         |         | 78                                    | • • • • • • • • • • • • • • • • • • •  |  |
| Ammonia             |          |   | (sum)   | . 7     | 2.2                                   | <u> </u>                               |  |
| Ammonia             |          |   | (win)   |         | 29                                    |                                        |  |
| Arsenic             |          |   |         |         | 0.40                                  | 0.72                                   |  |
| Barium              |          |   |         |         | 0.59                                  | 4.2                                    |  |
| Beryllium A         | :        |   |         |         | 0.13                                  | 0.87                                   |  |
| Boron               |          |   |         |         | 2.5                                   | 18                                     |  |
| Cadmium             |          |   |         |         | 0.013                                 | 0.027                                  |  |
| Chlorine, Tot. Res. |          |   |         |         | 0.029                                 | 0.040                                  |  |
| Chromium, Hex.      |          |   |         |         | 0.029                                 | 0.034                                  |  |
| Chromium, Tot.      |          |   |         | * * .   | 0.44                                  | 8.0                                    |  |
| Cobalt              |          | 1 |         |         | 0.064                                 | 0.47                                   |  |
| Copper              |          |   |         |         | 0.040                                 | 0.059                                  |  |
| Cyanide, Free       |          |   |         | •       | .014                                  | .047                                   |  |
| Residue, Dissolved  |          |   | .*      |         | 2670.                                 | ************************************** |  |
| Fluoride            |          |   | ,       | ₩.      | 40                                    |                                        |  |
| Iron                |          |   |         |         | 84                                    |                                        |  |
| Lead                |          |   | ٠       |         | 0.054                                 | 0.84                                   |  |
| Mercury             |          |   |         |         | 0.0000070                             | 0.0036                                 |  |
| Molybdenum          |          |   |         |         | 0.29                                  | 5.1                                    |  |
| Nickel              |          |   |         |         | 0.24                                  | 2.1                                    |  |
| Nitrate & Nitrite   |          |   |         |         | 1922                                  |                                        |  |
| PCBs A              |          |   |         |         | 0.00000052                            | A                                      |  |
| Selenium            |          |   | *       | •       | 0.013                                 | -                                      |  |

#### Allowable Effluent Loads to Protect Numeric Water Quality Criteria at Low Flows

|           |           | 1    | Applicable | _   | Allowable E | Effluent Loads <sup>B</sup> |
|-----------|-----------|------|------------|-----|-------------|-----------------------------|
| Parameter | (kg/l)    |      | Period     |     | Average     | Maximum                     |
| + 7       |           |      |            |     | 7.7         |                             |
| Silver    |           |      |            |     | 0.0035      | 0.017                       |
| Strontium | : 1 · · · | * *. |            |     | 2.1         | 15                          |
| Zinc      |           |      |            | • 1 | 0.66        | 0.52                        |

A This parameter must be included in calculations for additivity of carcinogens. However, the calculation is based on concentration, which cannot be calculated without an effluent flow. The additivity equation is constructed as follows:

$$\frac{\text{MAC for}^{A}}{\text{HH WLA}^{A}} + \frac{\text{MAC for}^{B}}{\text{HH WLA}^{B}} + \frac{\text{MAC for}^{C}}{\text{HH WLA}^{C}} + \frac{\text{MAC for}^{D}}{\text{HH WLA}^{D}} + \dots \leq 1.0$$

where A, B, C, ... are carcinogenic parameters as identified in Table 5.

Load is for entire Brush Wellman facility (all outfalls).

Table. 28 Final effluent limits and monitoring requirements for Brush Wellman outfall 2IE00000002 and 2IE00000014 and the basis for their recommendation.

|                  |       |                 | Effluent Lin | <u>mits</u>  |              |                    |
|------------------|-------|-----------------|--------------|--------------|--------------|--------------------|
|                  |       | Concentra       | ition        | Loading (l   | (g/day)a     |                    |
|                  |       | 30 Day          | Daily        | 30 Day       | Annual       |                    |
| Parameter        | Units | Average         | Maximum      | Average      | Maximum      | Basis <sup>b</sup> |
|                  |       |                 |              |              |              |                    |
| Flow             | MGD   |                 | Monito       | r            |              | M <sup>c</sup>     |
| Dissolved Solids | mg/l  | <del></del> , . | 21560        |              | <del>-</del> | ABS/EP/BN          |
| Suspended Solids | mg/l  | _ '             | 41           | ~            | 300          | ABS/EP, BPT        |
| Ammonia-N        | mg/l  | _               | 133          | _            | 900          | ABS/EP/BN, BAT     |
| Phosphorus       | mg/l  |                 | Monito       | r            |              | M <sup>c</sup>     |
| Fluoride         | mg/l  | <u></u>         | 35           | _            | 306          | ABS/EP, BAT        |
| pН               | S.U.  |                 | 6.5 to       | 9.0          |              | WQS                |
| Cyanide, Free    | mg/l  |                 | Monito       | r            |              | M <sup>c</sup>     |
| Cyanide, Total   | mg/l  | _               | 0.20         |              | 1.23         | ABS/EP, BAT        |
| Beryllium, T.R.  | μg/l  | . <del></del>   | 801          | · ·          | 5.68         | ABS/EP, BAT        |
| Cadmium, T. R.   | μg/l  | •••             | 26           |              | · ·          | WLA/IMZM           |
| Chromium, T. R.  | μg/l  |                 | 46           | <del>-</del> | 2.30         | ABS/EP, BAT        |
| Hex. Chromium    |       |                 |              |              |              |                    |
| (Dissolved)      | μg/l  | <del>-</del> ,  | 17           | <del>-</del> | <del>-</del> | ABS/EP             |
| Copper, T. R.    | μg/l  | _               | 67           |              | 9.37         | WLA/IMZM, BAT      |
| Nickel, T. R.    | μg/l  |                 | Monito       | r            |              | M <sup>c</sup>     |
| Silver, T. R.    | μg/l  | -               | 16           | <b></b> .    | -            | WLA/IMZM           |
| Whole Effluent   | . 0   |                 |              |              |              |                    |
| Toxicity         |       |                 | •            |              |              |                    |
| Acute            | TUa   |                 | 1.0          | _            | ·            | WET                |

<sup>&</sup>lt;sup>a</sup> Effluent loadings based on average design discharge flow of N/A MGD.

ABS = Antibacksliding Rule (OAC 3745-33-05(E) and 40 CFR Part 122.44(1)); AD = Antidegradation (OAC 3745-1-05); BAT = Best Available Control Technology Currently Available, 40 CFR Part 421, Non-ferrous Metals Manufacturing Category; BN = Biocriteria Narrative (OAC 3745-1-07(A)(6)); BPJ = Best Professional Judgment; BPT = Best Practicable Waste Treatment Technology, 40 CFR Part 421, Non-ferrous Metals Manufacturing Category; EP = Existing Permit; RP = Reasonable Potential for requiring water quality-based effluent limits and monitoring requirements in NPDES permits (3745-33-07(A)); WET = Whole Effluent Toxicity (OAC 3745-33-07(B)); WLA = Wasteload Allocation procedures (OAC 3745-2); WLA/IMZM = Wasteload Allocation limited by Inside Mixing Zone Maximum; WQS = Ohio Water Quality Standards (OAC 3745-1).

<sup>&</sup>lt;sup>c</sup> Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

Table 29. Final effluent limits and monitoring requirements for Brush Wellman outfall 2IE00000602 and the basis for their recommendation.

|                   |       |           | Effluent Lin | mits       |                      |                                                                                                                                                                                                                                   | * 21. |
|-------------------|-------|-----------|--------------|------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                   |       | Concentra | tion         | Loading (l | kg/day) <sup>a</sup> |                                                                                                                                                                                                                                   |       |
|                   |       | 30 Day    | Daily        | 30 Day     | Daily                | e de la Maria de la Carta d<br>La carta de la |       |
| Parameter         | Units | Average   | Maximum      | Average    | Maximum              | Basis <sup>b</sup>                                                                                                                                                                                                                |       |
|                   |       |           |              |            |                      |                                                                                                                                                                                                                                   |       |
| Flow              | MGD   |           | Monito       | r          |                      | M <sup>c</sup>                                                                                                                                                                                                                    |       |
| CBOD <sub>5</sub> | mg/l  | 10        | 15           | <u> </u>   | 4 <u>-</u> 2 - 1     | PD/ABS/EP                                                                                                                                                                                                                         |       |
| Suspended Solids  | mg/l  | 12        | 18           |            | <u> </u>             | PD/ABS/EP                                                                                                                                                                                                                         |       |
| Color             | Units |           | Observat     | tion       |                      | M <sup>c</sup>                                                                                                                                                                                                                    |       |
| Odor              | Units |           | Observat     | tion       |                      | M <sup>c</sup>                                                                                                                                                                                                                    |       |
| Turbidity         | Units |           | Observat     | ion        |                      | M <sup>c</sup>                                                                                                                                                                                                                    |       |
| Turbialty         | Units |           | Observat     | 110n       | 1                    | IVI <sup>-</sup>                                                                                                                                                                                                                  |       |

<sup>&</sup>lt;sup>a</sup> Effluent loadings based on average design discharge flow of N/A MGD.

b <u>Definitions:</u> ABS = Antibacksliding Rule (OAC 3745-33-05(E) and 40 CFR Part 122.44(I)); EP = Existing Permit; M = Monitoring; PD = Plant Design Criteria.

Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

Table 30. Final effluent limits and monitoring requirements for Brush Wellman outfalls 2IE00000004 and 2IE00000008 and the basis for their recommendation.

|                 |                  |             |             |                                                                       |                                             |                    | * -                     |
|-----------------|------------------|-------------|-------------|-----------------------------------------------------------------------|---------------------------------------------|--------------------|-------------------------|
|                 |                  |             | Effluent Li | nits                                                                  |                                             |                    | •                       |
|                 |                  | Concentra   | tion        | Loading (                                                             | kg/day) <sup>a</sup>                        |                    |                         |
|                 |                  | 30 Day      | Daily       | 30 Day                                                                | Daily                                       |                    |                         |
| Parameter       | Units            | Average     | Maximum     | Average                                                               | Maximum                                     | Basis <sup>b</sup> |                         |
| 0.64.004        |                  |             |             |                                                                       |                                             | •                  | •                       |
| Outfall 004     |                  |             |             |                                                                       |                                             |                    |                         |
| Flow            | MGD              |             | Monito      | r                                                                     |                                             | M <sup>c</sup>     |                         |
| Fluoride, T.    | mg/l             | ,           | Monito      | r                                                                     |                                             | M <sup>c</sup>     | -                       |
| Beryllium, T.R. | μg/l             | <b>-</b> ". | 820         | <u> </u>                                                              | _                                           | WLA/IMZM           |                         |
| Copper, T. R.   | μg/l             |             | 67          |                                                                       | -                                           | WLA/IMZM           |                         |
| Zinc, T. R.     | μg/l             |             | Monito      | r                                                                     |                                             | M <sup>c</sup>     |                         |
| PCBs            | μg/l             |             | Monito      | r                                                                     |                                             | M°                 |                         |
| O 15 11 000     | t se             |             |             | $S_{ij}(x_{ij},x_{ij}) = \frac{1}{i} \left( \frac{1}{i} \right)^{-1}$ |                                             |                    |                         |
| Outfall 008     | e de la servició |             |             | na, Inggaraga                                                         | 2 - 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + |                    | n in the last state of  |
| Flow            | MGD              |             | Monito      | r                                                                     |                                             | M <sup>c</sup>     |                         |
| Fluoride, T.    | mg/l             |             |             | r                                                                     |                                             | M <sup>c</sup>     |                         |
| Aluminum, T.R.  | μg/l             |             | Monito      |                                                                       |                                             | M <sup>c</sup>     |                         |
| Beryllium, T.R. | μg/l             | _           | 820         |                                                                       |                                             | WLA/IMZM           |                         |
| Cadmium, T.R.   | μg/l             |             | Monito      | r                                                                     |                                             | M <sup>c</sup>     |                         |
| Copper, T. R.   | μg/l             | _           | 67          |                                                                       |                                             | WLA/IMZM           | , and the second second |
| Titanium, T. R. | μg/l             |             | Monito      | )r                                                                    |                                             | M <sup>c</sup>     |                         |
| Zinc, T. R.     | μg/l             |             | Monito      | r                                                                     |                                             | M°                 |                         |
| •               |                  | •           |             |                                                                       |                                             |                    |                         |

<sup>&</sup>lt;sup>a</sup> Effluent loadings based on average design discharge flow of N/A MGD.

Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

Table 31. Final effluent limits and monitoring requirements for Brush Wellman outfalls 2IE00000005 and 2IE00000007 and the basis for their recommendation.

|                 |                    |           | Effluent Lin | <u>nits</u>                              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|-----------------|--------------------|-----------|--------------|------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                 | -                  | Concentra | tion         | Loading (l                               | kg/day) <sup>a</sup> | and the second of the second o |                                        |
|                 |                    | 30 Day    | Daily        | 30 Day                                   | Daily                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| Parameter       | Units              | Average   | Maximum      | Average                                  | Maximum              | Basis <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
| 0.01.000        | ing a kan<br>Ngjar |           |              | 19 19 19 19 19 19 19 19 19 19 19 19 19 1 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n en la la Tari<br>Servicio esta al la |
| Outfall 005     |                    |           |              |                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| T1              | MOD                |           | 3.5          |                                          |                      | 3.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |
| Flow            | MGD                |           | Monitor      |                                          |                      | M <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| Fluoride, T.    | mg/l               |           |              |                                          |                      | M <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| Beryllium, T.R. | μg/l               |           | Monitor      |                                          |                      | M°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
| Copper, T. R.   | μg/l               | <u> </u>  | 67           | <del>-</del>                             |                      | WLA/IMZM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
| Zinc, T. R.     | μg/l               |           | Monitor      |                                          |                      | M <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| Outfall 007     |                    |           | •            | 11 F                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| Outjuit 007     |                    |           |              |                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| Flow            | MGD                |           | Monitor      |                                          |                      | M <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| Fluoride, T.    | mg/l               |           | Monitor      |                                          |                      | M <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| Beryllium, T.R. | μg/l               |           |              |                                          |                      | M°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |
| Cadmium, T.R.   | μg/l               |           | Monitor      |                                          |                      | M <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| Copper, T. R.   | μg/l               | _         | 67           | _                                        | _                    | WLA/IMZM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |
| Zinc, T. R.     | μg/l               |           | Monitor      |                                          |                      | M <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| PCBs            | μg/l               |           | Monitor      |                                          |                      | M <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
|                 | r <i>6</i> '       |           | 1.10IIIIOI   |                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |

<sup>&</sup>lt;sup>a</sup> Effluent loadings based on average design discharge flow of N/A MGD.

<sup>&</sup>lt;sup>c</sup> Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

Table 32. Final effluent limits and monitoring requirements for Brush Wellman outfalls 2IE00000006 and 2IE00000009 and the basis for their recommendation.

|                                          |       |                                                                                                               | Effluent Lim |            |                     |                    |            |
|------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------|--------------|------------|---------------------|--------------------|------------|
|                                          |       | Concentrat                                                                                                    | ion          | Loading (k | g/day) <sup>a</sup> |                    |            |
|                                          |       | 30 Day                                                                                                        | Daily        | 30 Day     | Daily               |                    |            |
| Parameter                                | Units | Average                                                                                                       | Maximum      | Average    | Maximum             | Basis <sup>b</sup> |            |
|                                          |       |                                                                                                               |              |            |                     |                    |            |
| Outfall 006                              |       | : .                                                                                                           |              |            |                     |                    |            |
|                                          |       |                                                                                                               |              |            | •                   |                    |            |
| Flow                                     | MGD   |                                                                                                               | Monitor      |            |                     | M <sup>c</sup>     |            |
| Fluoride                                 | mg/l  |                                                                                                               | Monitor      |            |                     | Mc                 |            |
| pН                                       | S.U.  |                                                                                                               | 6.5 to 9     | 9.0        |                     | WQS                |            |
| Aluminum, T.R.                           | mg/l  |                                                                                                               | Monitor      |            |                     | Mc                 |            |
| Beryllium, T.R.                          | μg/l  |                                                                                                               | Monitor      |            |                     | $\mathbf{M}^{c}$   |            |
| Copper, T. R.                            | μg/l  |                                                                                                               | 67           | _          |                     | WLA/IM             | ZM         |
| Titanium, T.R.                           | μg/l  |                                                                                                               | Monitor      |            |                     | M <sup>c</sup>     |            |
| en e | · · · | e de la companya de |              | * **       |                     |                    |            |
| Outfall 009                              |       | -                                                                                                             |              |            |                     |                    |            |
|                                          |       |                                                                                                               |              |            |                     | ·                  |            |
| Flow                                     | MGD   |                                                                                                               | Monitor      |            |                     | M <sup>c</sup>     |            |
| Fluoride                                 | mg/l  |                                                                                                               | Monitor      |            |                     | M <sup>c</sup>     |            |
| pН                                       | S.Ü.  |                                                                                                               | 6.5 to       | 9.0        |                     | WQS                |            |
| Beryllium, T.R.                          | μg/l  |                                                                                                               | Monitor      |            |                     | M <sup>c</sup>     |            |
| Copper, T. R.                            | μg/l  |                                                                                                               | 67           | _          | <u> </u>            | WLA/IM             | <b>7</b> M |

<sup>&</sup>lt;sup>a</sup> Effluent loadings based on average design discharge flow of N/A MGD.

<sup>&</sup>lt;sup>c</sup> Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

Table 33. Final effluent limits and monitoring requirements for Brush Wellman outfall 2IE00000011 and the basis for their recommendation.

| · •                  | <u> </u>         | ·            |              |                  |                                                 |                    |
|----------------------|------------------|--------------|--------------|------------------|-------------------------------------------------|--------------------|
|                      |                  |              | Effluent Lin | <u>nits</u>      |                                                 |                    |
| And the great states |                  | Concentrat   | tion         | Loading (k       | (g/day)a                                        |                    |
|                      |                  | 30 Day       | Daily        | 30 Day           | Daily                                           |                    |
| Parameter            | Units            | Average      | Maximum      | Average          | Maximum                                         | Basis <sup>b</sup> |
|                      |                  |              |              |                  |                                                 |                    |
| Flow                 | MGD              |              | Monitor      |                  |                                                 | M <sup>c</sup>     |
| Dissolved Solids     | mg/l             | 13477        | 15881        |                  | <del>-</del>                                    | BN                 |
| Suspended Solids     | mg/l             | 30           | 45           | · . <del>-</del> | _                                               | ABS/EP/BPJ         |
| Oil and Grease       | mg/l             | 12           | 20           |                  |                                                 | ABS/EP/BPJ         |
| Ammonia-N            | mg/l             |              | 13           |                  | <u> -</u>                                       | ABS/EP/BPJ         |
| Nitrate/Nitrite-N    | mg/l             |              | Monitor      |                  |                                                 | M <sup>c</sup>     |
| Phosphorus           | mg/l             |              | Monitor      |                  |                                                 | M <sup>c</sup>     |
| Fluoride             | mg/l             | <b>4</b> — • | 16           | · <u> </u>       | 4 <u>.</u> * 44 *                               | ABS/EP/BPJ         |
| pН                   | S.U.             |              | 6.5 to       | 9.0              |                                                 | WQS                |
| Fecal Coliform       | #/100ml          | 1000         | 2000         | ·                |                                                 | WQS                |
| Chlorine, T.R.       | mg/l             |              | 0.038        |                  | <u> </u>                                        | ABS/EP/WLA/IMZM    |
| Beryllium, T.R.      | μg/l             |              | 102          |                  | · <u> </u>                                      | ABS/EP/BPJ         |
| Cadmium, T. R.       | μg/l             | _            | 26           |                  | - <u></u> 1   1   1   1   1   1   1   1   1   1 | ABS/EP/BPJ         |
| Chromium, T. R.      | μg/l             |              | Monitor      |                  |                                                 | M <sup>c</sup>     |
| Hex. Chromium        |                  |              |              |                  |                                                 |                    |
| (Dissolved)          | μg/l             | 26           | 31           | <u></u>          | · <u> </u>                                      | ABS/EP/BPJ;        |
|                      |                  |              | •            |                  |                                                 | WLA/IMZM           |
| Copper, T. R.        | μg/l             | · ·          | 67           |                  | <u> </u>                                        | WLA/IMZM           |
| Nickel, T. R.        | μg/l             |              | Monitor      |                  |                                                 | M <sup>c</sup>     |
| Silver, T. R.        | μg/l             |              | 16           | _                | _                                               | WLA/IMZM           |
| Whole Effluent       | 1 <del>0</del> - |              |              |                  |                                                 |                    |
| Toxicity             |                  |              |              |                  |                                                 |                    |
| Acute                | TUa              | _            | 1.0          | _                |                                                 | WET                |
|                      |                  |              | 2.00         |                  |                                                 |                    |
|                      |                  |              |              |                  | <u> </u>                                        |                    |

<sup>&</sup>lt;sup>a</sup> Effluent loadings based on average design discharge flow of N/A MGD.

ABS = Antibacksliding Rule (OAC 3745-33-05(E) and 40 CFR Part 122.44(1)); BN = Biocriteria Narrative (OAC 3745-1-07(A)(6)); BPJ = Best Professional Judgment; EP = Existing Permit; IJC = 1988 revision of the 1972 Great Lakes Water Quality Agreement of the International Joint Commission; M = Monitoring; PD = Plant Design Criteria; RP = Reasonable Potential for requiring water quality-based effluent limits and monitoring requirements in NPDES permits (OAC 3745-33-07(A)); WET = Whole Effluent Toxicity (OAC 3745-33-07(B) or 40 CFR 132); WLA = Wasteload Allocation procedures (OAC 3745-2); WLA/IMZM = Wasteload Allocation limited by Inside Mixing Zone Maximum; WQS = Ohio Water Quality Standards (OAC 3745-1).

<sup>&</sup>lt;sup>c</sup> Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

Table 34. Final effluent limits and monitoring requirements for Brush Wellman outfall 2IE00000099 and the basis for their recommendation (Tier 1 - 801 flow >15 cfs but <30 cfs).

|                  |       | •                | Effluent Lin            | <u> iits</u> |          |                                       |
|------------------|-------|------------------|-------------------------|--------------|----------|---------------------------------------|
|                  |       | Concentra        | tion                    | Loading (k   | (g/day)a |                                       |
|                  |       | 30 Day           | Daily                   | 30 Day       | Daily    |                                       |
| Parameter        | Units | Average          | Maximum                 | Average      | Maximum  | Basis <sup>b</sup>                    |
| Flow             | MGD   |                  | Monitor                 | ·            |          | M <sup>c</sup>                        |
| Dissolved Solids | mg/l  | _                | _                       | 10540        | 13122    | WLA, ABS/EP                           |
| Ammonia-N        | mg/l  |                  |                         |              |          |                                       |
| Summer           |       |                  | <del>-</del> .          | 2.68         | _        | ABS/EP                                |
| Winter           |       |                  | _                       | 28.4         |          | ABS/EP                                |
| Cyanide, Free    | mg/l  |                  | <del></del>             | 0.055        | 0.233    | WLA                                   |
| Beryllium, T.R.  | μg/l  | -                |                         | 0.5          | 4.33     | WLA                                   |
| Cadmium, T. R.   | μg/l  | · <del>-</del>   | <del>_</del>            | 0.04         | 0.137    | ABS/EP, WLA                           |
| Chromium, T. R.  | μg/l  | · <u> </u>       | <del>-</del> ,          | 0.90         | 40.1     | WLA                                   |
| Hex. Chromium    |       |                  |                         |              | e grand  | and the company of the company of the |
| (Dissolved)      | μg/l  | _                | _                       | 0.116        | 0.169    | WLA                                   |
| Copper, T. R.    | μg/l  |                  | ·,—                     | 0.159        | 0.296    | WLA                                   |
| Nickel, T. R.    | μg/l  | . <del>-</del> . | . <del>-</del> 100 2000 | 0.95         | 10.37    | WLA                                   |
| Silver, T. R.    | μg/l  | _                | 1. <del>-</del>         | 0.014        | 0.083    | WLA                                   |

<sup>&</sup>lt;sup>a</sup> Effluent loadings based on average design discharge flow of N/A MGD.

<sup>6</sup> Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

Table 35. Final effluent limits and monitoring requirements for Brush Wellman outfall 2IE00000099 and the basis for their recommendation (Tier 2 - 801 flow >30 cfs but <45 cfs).

|                  |       |             | Effluent Lin      | <u>iits</u> |          |                    |
|------------------|-------|-------------|-------------------|-------------|----------|--------------------|
|                  |       | Concentrat  | tion              | Loading (k  | (g/day)a |                    |
|                  |       | 30 Day      | Daily             | 30 Day      | Daily    |                    |
| Parameter        | Units | Average     | Maximum           | Average     | Maximum  | Basis <sup>b</sup> |
|                  |       | ٠.          | No. of the second |             |          |                    |
| Flow             | MGD   |             | Monitor           |             |          | M <sup>c</sup>     |
| Dissolved Solids | mg/l  | <u> </u>    | · 🗕 🚬 🧎           | 21079       | 28616    | WLA, ABS/EP        |
| Ammonia-N        | mg/l  |             |                   |             |          |                    |
| Summer           |       |             | ¥ <u>=</u> ,      | 5.36        | 32.69    | ABS/EP             |
| Winter           |       | <u>:-</u>   |                   | 56.84       | 212.69   | ABS/EP             |
| Cyanide, Free    | mg/l  | · <u> </u>  | <u> </u>          | 0.11        | 0.47     | WLA                |
| Beryllium, T.R.  | μg/l  | _           | _                 | 1.0         | 8.67     | WLA                |
| Cadmium, T. R.   | μg/l  | .,          | <del>-</del>      | 0.08        | 0.27     | ABS/EP, WLA        |
| Chromium, T. R.  | μg/l  | _ , , , , , |                   | 1.8         | 80       | WLA                |
| Hex. Chromium    |       | •           | No. of the second | e company   |          |                    |
| (Dissolved)      | μg/l  | <u> </u>    |                   | 0.23        | 0.34     | WLA                |
| Copper, T. R.    | μg/l  | · <b>-</b>  |                   | 0.32        | 0.59     | WLA                |
| Nickel, T. R.    | μg/l  |             | _                 | 1.9         | 21       | WLA                |
| Silver, T. R.    | μg/l  | -           | - 1               | 0.028       | 0.17     | WLA                |

<sup>&</sup>lt;sup>a</sup> Effluent loadings based on average design discharge flow of N/A MGD.

Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

Table 36. Final effluent limits and monitoring requirements for Brush Wellman outfall 2IE00000099 and the basis for their recommendation (Tier 3 - 801 flow >45 cfs but <60 cfs).

|                                         |          |                  | Effluent Lin    | <u>nits</u> |          | •                  |   |
|-----------------------------------------|----------|------------------|-----------------|-------------|----------|--------------------|---|
|                                         |          | Concentra        | tion            | Loading (   | kg/day)ª |                    |   |
| v e e e e e e e e e e e e e e e e e e e |          | 30 Day           | Daily           | 30 Day      | Daily    |                    |   |
| Parameter                               | Units    | Average          | Maximum         | Average     | Maximum  | Basis <sup>b</sup> |   |
| Flow                                    | MGD      |                  | Monito          | r           |          | M°                 |   |
| Dissolved Solids                        | mg/l     | _                |                 | 31619       | 42924    | WLA, ABS/EP        |   |
| Ammonia-N                               | mg/l     |                  |                 |             |          |                    |   |
| Summer                                  | <i>3</i> | . <del>-</del> . | · <u> </u>      | 8.04        | 46.69    | ABS/EP             |   |
| Winter                                  | •        |                  |                 | 38.69       | 85.26    | ABS/EP             |   |
| Cyanide, Free                           | mg/l     | _ :              | -               | 0.17        | 0.70     | WLA                | - |
| Beryllium, T.R.                         | μg/l     | _                | _               | 1.5         | 13       | WLA                |   |
| Cadmium, T. R.                          | μg/l     | <del></del>      |                 | 0.12        | 0.41     | ABS/EP, WLA        |   |
| Chromium, T. R.                         | μg/l     | . <del>-</del> - | · <b>_</b> ,    | 2.7         | 120      | WLA                |   |
| Hex. Chromium                           | 17.      |                  |                 |             |          |                    | • |
| (Dissolved)                             | μg/l     | <del>-</del> :   | _               | 0.35        | 0.51     | WLA                |   |
| Copper, T. R.                           | μg/l     | _                |                 | 0.48        | 0.89     | WLA                |   |
| Nickel, T. R.                           | μg/l     | _                |                 | 2.9         | 31       | WLA                |   |
| Silver, T. R.                           | μg/l     | _                | , <del></del> . | 0.041       | 0.25     | WLA                |   |

<sup>&</sup>lt;sup>a</sup> Effluent loadings based on average design discharge flow of N/A MGD.

Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

Table 37. Final effluent limits and monitoring requirements for Brush Wellman outfall 2IE00000099 and the basis for their recommendation (Tier 4 - 801 flow >60 cfs but <125 cfs).

|                  |          |                | Effluent Lin | <u>nits</u> |             |                                       |   |
|------------------|----------|----------------|--------------|-------------|-------------|---------------------------------------|---|
|                  | ti i i i | Concentra      | tion         | Loading (k  | (g/day)a    |                                       |   |
|                  |          | 30 Day         | Daily        | 30 Day      | Daily       |                                       |   |
| Parameter        | Units    | Average        | Maximum      | Average     | Maximum     | Basis <sup>b</sup>                    |   |
|                  |          |                |              |             |             | * * * * * * * * * * * * * * * * * * * |   |
| Flow             | MGD      |                | Monitor      |             |             | M <sup>c</sup>                        |   |
| Dissolved Solids | mg/l     | _              | <b>-</b> ,   | 42159       | 57232       | WLA, ABS/EP                           |   |
| Ammonia-N        | mg/l     | •              |              |             |             |                                       |   |
| Summer           | . •      | · _            | _            | 10.7        | 62.69       | ABS/EP                                |   |
| Winter           |          |                | _            | 113.68      | 425.69      | ABS/EP                                |   |
| Cyanide, Free    | mg/l     |                | <del>-</del> | 0.22        | 0.93        | WLA                                   |   |
| Beryllium, T.R.  | μg/l     |                |              | 2.0         | 17          | WLA                                   |   |
| Cadmium, T. R.   | μg/l     |                | - :          | 0.16        | 0.55        | ABS/EP, WLA                           |   |
| Chromium, T. R.  | μg/l     | · <del>-</del> | _            | 3.6         | 160         | WLA                                   |   |
| Hex. Chromium    | . 1 3    | •              |              |             | •           |                                       |   |
| (Dissolved)      | μg/l     | - P            | _            | 0.47        | 0.68        | WLA                                   |   |
| Copper, T. R.    | μg/l     | _              | ·_ :         | 0.63        | 1.2         | WLA                                   |   |
| Nickel, T. R.    | μg/l     | _              | <u></u>      | 3.8         | 41          | WLA                                   |   |
| Silver, T. R.    | μg/l     | . <u> </u>     | <b>-</b>     | 0.055       | 0.33        | WLA                                   | 1 |
|                  | 10-      |                |              |             | <del></del> |                                       |   |

<sup>&</sup>lt;sup>a</sup> Effluent loadings based on average design discharge flow of N/A MGD.

Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

Table 38. Final effluent limits and monitoring requirements for Brush Wellman outfall 2IE00000099 and the basis for their recommendation (Tier 5 - 801 flow >125 cfs but < 220 cfs).

|                  |             |                | Effluent Lin  | <u>nits</u> |          |                                          |
|------------------|-------------|----------------|---------------|-------------|----------|------------------------------------------|
|                  |             | Concentra      | tion          | Loading (   | kg/day)a |                                          |
|                  |             | 30 Day         | Daily         | 30 Day      | Daily    |                                          |
| Parameter        | Units       | Average        | Maximum       | Average     | Maximum  | Basis <sup>b</sup>                       |
|                  |             |                |               |             |          |                                          |
| Flow             | MGD         |                | Monito        | r           |          | M <sup>c</sup>                           |
| Dissolved Solids | mg/l        |                | . <del></del> | 87830       | 119233   | WLA, ABS/EP                              |
| Ammonia-N        | mg/l        |                |               |             |          |                                          |
| Summer           |             | _              | <del>.</del>  | 22.3        | 130.69   | ABS/EP                                   |
| Winter           | 2 - 2 - 12  |                | <b>-</b>      | 236.83      | 881.69   | ABS/EP                                   |
| Cyanide, Free    | mg/l        | . <del>-</del> | _             | 0.46        | 1.9      | WLA                                      |
| Beryllium, T.R.  | μg/l        |                | _             | 4.19        | 36       | WLA                                      |
| Cadmium, T. R.   | μg/l        | _              | _             | 0.34        | 1.14     | ABS/EP, WLA                              |
| Chromium, T. R.  | μg/l        | _              | _             | 7.5         | 334      | WLA                                      |
| Hex. Chromium    |             |                | 4             |             |          | en e |
| (Dissolved)      | μg/l        | _              | . <u>-</u>    | 0.97        | 1.41     | WLA                                      |
| Copper, T. R.    | μg/l        | _ :            | _             | 1.32        | 2.47     | WLA                                      |
| Nickel, T. R.    | μg/l        | ··-            | <b>–</b>      | 7.94        | 86       | WLA                                      |
| Silver, T. R.    | . υ<br>μg/l | <del>-</del>   | · —           | 0.15        | 1.03     | WLA                                      |

<sup>&</sup>lt;sup>a</sup> Effluent loadings based on average design discharge flow of N/A MGD.

Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

Table 39. Final effluent limits and monitoring requirements for Brush Wellman outfall 2IE00000099 and the basis for their recommendation (Tier 6 - 801 flow greater than or equal to 220 cfs).

|                  | 1 · · · · · · · · · · · · · · · · · · · |           | Effluent Lin                      | <u>its</u> |         |                    |
|------------------|-----------------------------------------|-----------|-----------------------------------|------------|---------|--------------------|
|                  |                                         | Concentra | tion                              | Loading (k | g/day)a |                    |
|                  |                                         | 30 Day    | Daily                             | 30 Day     | Daily   |                    |
| Parameter        | Units                                   | Average   | Maximum                           | Average    | Maximum | Basis <sup>b</sup> |
|                  |                                         |           |                                   |            |         |                    |
| Flow             | MGD                                     |           | Monitor                           |            |         | M <sup>c</sup>     |
| Dissolved Solids | mg/l                                    | _         | ·                                 | 154581     | 209850  | WLA, ABS/EP        |
| Ammonia-N        | mg/l                                    |           |                                   |            |         |                    |
| Summer           |                                         |           | e <del>al</del> la companya di sa | 39.3       | 230.69  | ABS/EP             |
| Winter           |                                         |           | 4. <u>-</u>                       | 416.83     | 1560.69 | ABS/EP             |
| Cyanide, Free    | mg/l                                    | _         | _                                 | 0.81       | 3.4     | WLA                |
| Beryllium, T.R.  | μg/l                                    | · — .     | · <u> </u>                        | 7.4        | 64      | WLA                |
| Cadmium, T. R.   | μg/l                                    | <u> </u>  | · <del>_</del>                    | 0.60       | 2.0     | ABS/EP, WLA        |
| Chromium, T. R.  | μg/l                                    | -         |                                   | 13         | 587     | WLA                |
| Hex. Chromium    |                                         |           |                                   |            |         |                    |
| (Dissolved)      | μg/l                                    | _         | s<br>Same garage and same         | 1.7        | 2.5     | WLA                |
| Copper, T. R.    | μg/l                                    |           |                                   | 2.3        | 4.3     | WLA                |
| Nickel, T. R.    | μg/l                                    |           | · · · <u> </u>                    | 14         | 152     | WLA                |
| Silver, T. R.    | μg/l                                    | -         |                                   | 0.20       | 1.2     | WLA                |

<sup>&</sup>lt;sup>a</sup> Effluent loadings based on average design discharge flow of N/A MGD.

#### b <u>Definitions:</u>

<sup>&</sup>lt;sup>c</sup> Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

Table 40. Final effluent limits and monitoring requirements for Brush Wellman monitoring station 2IE00000900 and the basis for their recommendation.

|                   |       |           | Effluent Lis | <u>nits</u> |                      |                    |          |   |
|-------------------|-------|-----------|--------------|-------------|----------------------|--------------------|----------|---|
|                   |       | Concentra | tion         | Loading (   | kg/day) <sup>a</sup> |                    |          |   |
|                   |       | 30 Day    | Daily        | 30 Day      | Daily                | . · · · · · · · ·  |          |   |
| Parameter         | Units | Average   | Maximum      | Average     | Maximum              | Basis <sup>b</sup> | <u> </u> |   |
|                   |       |           |              |             |                      |                    |          |   |
| Dissolved Solids  | mg/l  |           | Monito       | r           |                      | $M^c$              |          |   |
| Ammonia-N         | mg/l  |           | Monito       | or          |                      | $\mathbf{M}^{c}$   |          | • |
| Nitrite-N         | mg/l  |           | Monito       | r           |                      | Mc                 |          |   |
| Nitrate/Nitrite-N | mg/l  |           | Monito       | r           | . <b></b>            | M <sup>c</sup>     |          |   |
| Cyanide, Free     | mg/l  |           | Monito       | r           |                      | $\mathbf{M}^{c}$   |          |   |
| Beryllium, T.R.   | μg/l  |           | Monito       | r           |                      | $M^c$              |          |   |
| Copper, T. R.     | μg/l  |           | Monito       | r           |                      | $\mathbf{M}^{c}$   |          |   |
| Nickel, T. R.     | μg/l  |           | Monito       | r           |                      | M <sup>c</sup>     |          |   |
| Zinc, T. R.       | μg/l  |           | Monito       | r           |                      | $\mathbf{M}^{c}$   |          |   |
| PCBs              | μg/l  | **        | **           | -           | _                    | ABS/EP             |          |   |

<sup>\*\*</sup> No detectable concentration of PCBs.

<sup>&</sup>lt;sup>a</sup> Effluent loadings based on average design discharge flow of N/A MGD.

Monitoring of flow and other indicator parameters is specified to assist in the evaluation of effluent quality and treatment plant performance.

Attachment A - Effluent Guideline Calculations for Outfall 002

### Attachment - Effluent Guideline Calculations or Brush Wellman outfall 002/014

|             | BeO Process<br>421.152(e); 421.153(e)<br>(lbs./million lbs. Be) | BeO Production million lbs./year: | BeO Loading<br>kg/year | Be Pebbles Process<br>421.152(g); 421.153(g)<br>(lbs./million lbs. Be) |           | Be Pebbles Loading kg/year |
|-------------|-----------------------------------------------------------------|-----------------------------------|------------------------|------------------------------------------------------------------------|-----------|----------------------------|
|             | Annual                                                          | 0.0895524                         |                        | Annual                                                                 | 0.0582206 |                            |
| TSS         | 5142                                                            |                                   | 209.308                | 3409                                                                   |           | 90.215                     |
| Ammonia     | 15450                                                           |                                   | 628.902                | 10240                                                                  |           | 270.990                    |
| Beryllium   | 97.57                                                           |                                   | 3.972                  | 64.68                                                                  |           | 1.712                      |
| Chromium    | 39.56                                                           |                                   | 1.610                  | 26.22                                                                  |           | 0.694                      |
| Copper      | , 160.9                                                         |                                   | 6.550                  | 106.6                                                                  |           | 2.821                      |
| Cyanide, T. | 21.1                                                            |                                   | 0.859                  | 13.98                                                                  |           | 0.370                      |
| Fluoride    | 5248                                                            |                                   | 213.623                | 3479                                                                   |           | 92.068                     |

#### Outfall 002/014 Annual Loading Limits

| TSS         | 299.52 |
|-------------|--------|
| Ammonia     | 899.89 |
| Beryllium   | 5.68   |
| Chromium    | 2.30   |
| Copper      | 9.37   |
| Cyanide, T. | 1.23   |
| Fluoride    | 305.69 |
|             | ٥      |

Attachment B - Memorandum of Agreement between Ohio EPA and U.S. EPA on GLI Implementation

STREET ADDRESS:

MAILING ADDRESS: P.O. Box 1049

Columbus, OH 43216-1049

TELE: (614) 644-3020 FAX: (614) 644-2329

Lazarus Government Center 122 S. Front Street Columbus, Ohio 43215

May 3, 2000

Mr. Francis X. Lyons Regional Administrator U.S. EPA Region V 77 West Jackson Blvd. Chicago, Illinois 60604

Re: Water Quality Guidance for the Great Lakes System

Dear Mr. Lyons:

In letters from Water Division Director Jo Lynn Traub, dated June 30, 1999 and August 16, 1999, U.S. EPA summarized the results of its review of Ohio rules adopted pursuant to the federal Water Quality Guidance for the Great Lakes System. The letters concluded that parts of the rules are inconsistent with the Guidance and, therefore, must be revised. Over the past nine months our respective staffs have worked to resolve the inconsistencies. I have signed and enclosed two copies of a Memorandum of Agreement that will resolve three of the inconsistencies. If you concur with the agreement, please sign the copies and return one copy to me.

I am pleased that we were able to address these areas of inconsistency with the Guidance through the Memorandum of Agreement. However, I remain very concerned that U.S. EPA has consistently promoted Ohio's biological criteria approach to water quality, yet just as consistently objects to Ohio rules that seek to implement that approach. U.S. EPA's position on these rules would appear to contradict its desire for "innovation." If you would like to speak with me on this matter, please do not he sitate to call me at (614) 644-2702.

Sincerely,

Christopher Jónes

Director

**Enclosures** 

cc: Jo Lynn Traub, U.S. EPA Region V, Water Division Lisa Morris, Chief, Ohio EPA, Division of Surface Water

CJ:drd

P:\SHARE\Sts\Projects\wqs\biocriteria\_narr\Lyons\_3a.wpd

## Addendum to the

# National Pollutant Discharge Elimination System Memorandum of Agreement Between the State of Ohio and the

United States Environmental Protection Agency, Region 5 Concerning Ohio's Great Lakes Water Quality Standards and Implementation Procedures

The federal Water Quality Guidance for the Great Lakes System (federal guidance), 40 CFR Part 132, contains the minimum water quality standards, antidegradation policies, and implementation procedures for the Great Lakes system to protect human health, aquatic life, and wildlife. The Great Lakes states and tribes were required to adopt provisions consistent with (as protective as) the federal guidance for their waters within the Great Lakes system. The Ohio Environmental Protection Agency (Ohio EPA) adopted Great Lakes system water quality standards and implementation procedures on October 16, 1997, and these rules became effective on October 31, 1997.

The United States Environmental Protection Agency Region 5 (U.S. EPA) and the Ohio EPA enter into this Addendum to their National Pollutant Discharge Elimination System (NPDES) Memorandum of Agreement to ensure that Ohio's rules concerning Great Lakes system water quality standards and implementation procedures are implemented in a manner that is consistent with the federal guidance.

#### A. Intake Pollutants - Noncontact Cooling Water

OAC 3745-33-07(A)(9)(a) provides Ohio EPA with discretion to impose a water quality based effluent limitation (WQBEL) for pollutants in discharges that are comprised of once-through noncontact cooling water in certain circumstances unless the permittive can demonstrate that the presence of the pollutant in the discharge is due solely to its presence in the once-through noncontact cooling water. Ohio EPA shall exercise its discretion under OAC 3745-33-07(A)(9)(a) to always require WQBELs based on an acute or chronic aquatic life, wildlife or human health Tier I criterion or Tier II value, or whole effluent toxicity requirements, whenever information is available to indicate that pollutants in a discharge will cause, or have the reasonable potential to cause, an exceedance of a Tier I criterion or Tier II value or whole effluent toxicity requirements unless the pollutants are due solely to their presence in the intake water. Ohio EPA shall make its reasonable potential determinations regarding pollutants added to cooling water based upon the level of the particular pollutant at issue in the entire discharge rather than simply the levels of the pollutants that are added to the cooling water.

## B. Applicability of "Outside Mixing Zone Average Water Quality Criteria and Values" in Limited Resource Waters

In making NPDES permitting decisions, Ohio EPA will apply the 'Outside Mixing Zone Average' water quality criteria and values for the protection of aquatic life specified in OAC 3745-1-33, or site-specific modifications thereof, and the chronic whole effluent toxicity requirements in OAC 3745-2-09(A)(4), or site-specific modifications thereof, to all water bodies in the Great Lakes Basin including those designated as limited resource waters.

#### C. Discretionary authority of the Director of Ohio EPA under 3745-1-07(A)(6)(a)

OAC 3745-1-07(A)(6)(a) provides that:

"demonstrated attainment of biological criteria in a water body will take precedence over the application of selected chemical-specific aquatic life or whole-effluent criteria associated with these uses when the director, upon considering appropriately detailed chemical, physical and biological data, finds that one or more chemical specific or whole-effluent criteria are inappropriate."

In such circumstances, the rule provides two options for the director in establishing permit limits. Either the director or the permittee with the approval of the director may develop a site-specific water quality criterion, or the director may "proceed with establishing effluent limits consistent with attainment of the designated use."

Where there exists reasonable potential that a discharge will cause or contribute to an exceedance of a tier I criterion, tier II value or whole effluent toxicity criterion, and the conditions described in OAC 3745-1-07(A)(6)(a) apply, Ohio EPA will always include effluent limits in permits that are derived from and comply with the applicable criteria or values or site-specific modifications thereof. This agreement does not preclude Ohio EPA from applying alternative modeling techniques or alternative flows where these are supported by the available site-specific data in determining reasonable potential and deriving appropriate permit limits consistent with OAC 3745-2-05(A). This agreement does not apply to permitting decisions regarding WQBELs for pollutants listed in table 5 to 40 CFR 132.

[NOTES: 3745-2-05(A) STATES: "Alternative modeling methods (including, but not limited to, continuous simulation or probabilistic analyses) may be used at the discretion of the director if they are demonstrated to be appropriate and protective of applicable water quality criteria." WHERE THIS PROVISION IS INVOKED, OHIO EPA MAY USE THE FINDING OF ATTAINMENT OF BIOLOGICAL CRITERIA AS THE DEMONSTRATION THAT THE DEFAULT MODELING PROCEDURES ARE OVERLY CONSERVATIVE. IN ADDITION, 3745-2-05(A)(1)(g) STATES: "Alternative flows may be used at the director's discretion if the flow is as protective as those listed in this paragraph." THIS PROVISION

MAY BE USED AS THE BASIS FOR DEVIATING FROM DEFAULT STREAM FLOWS IF BIOLOGICAL DATA SHOW ATTAINMENT. THESE TWO PROVISIONS, PLUS OHIO'S MIXING ZONE PROVISIONS, MAY BE USED TO ADDRESS SITUATIONS WHERE THERE IS NO BASIS FOR A SITE-SPECIFIC CRITERION, BUT THE CONSERVATIVE MODELING ASSUMPTIONS MAY BE DRIVING A REASONABLE POTENTIAL OR PERMIT LIMIT DECISION.]

#### **OHIO ENVIRONMENTAL PROTECTION AGENCY**

By: Churty has

Christopher Jones

Director

Date: 5 / 2/00

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION 5

Francis X. Lyons

**Regional Administrator** 

Date: 7/28/00